Cargando…

Structure and Dynamics of the Isozymes II and IX of Human Carbonic Anhydrase

[Image: see text] Human carbonic anhydrases (HCAs) are responsible for the pH control and sensing in our body and constitute key components in the central pH paradigm connected to cancer therapeutics. However, little or no molecular level studies are available on the pH-dependent stability and funct...

Descripción completa

Detalles Bibliográficos
Autores principales: Rai, Divya, Khatua, Satyajit, Taraphder, Srabani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453958/
https://www.ncbi.nlm.nih.gov/pubmed/36092600
http://dx.doi.org/10.1021/acsomega.2c03356
Descripción
Sumario:[Image: see text] Human carbonic anhydrases (HCAs) are responsible for the pH control and sensing in our body and constitute key components in the central pH paradigm connected to cancer therapeutics. However, little or no molecular level studies are available on the pH-dependent stability and functional dynamics of the known isozymes of HCA. The main objective of this Article is to report the first bench-marking study on the structure and dynamics of the two most efficient isozymes, HCA II and IX, at neutral pH using classical molecular dynamics (MD) and constant pH MD (CpHMD) simulations combined with umbrella sampling, transition path sampling, and Markov state models. Starting from the known crystal structures of HCA II and the monomeric catalytic domain of HCA IX (labeled as HCA IX-c), we have generated classical MD and CpHMD trajectories (of length 1 μs each). In all cases, the overall stability, RMSD, and secondary structure segments of the two isozymes are found to be quite similar. Functionally important dynamics of these two enzymes have been probed in terms of active site hydration, coordination of the Zn(II) ion to a transient excess water, and the formation of putative proton transfer paths. The most important difference between the two isozymes is observed for the side-chain fluctuations of His-64 that is expected to shuttle an excess proton out of the active site as a part of the rate-determining intramolecular proton transfer reaction. The relative stability of the stable inward and outward conformations of the His-64 side-chain and the underlying free energy surfaces are found to depend strongly on the isozyme. In each case, a lower free energy barrier is detected between predominantly inward conformations from predominantly outward ones when simulated under constant pH conditions. The kinetic rate constants of interconversion between different free energy basins are found to span 10(7)–10(8) s(–1) with faster conformational transitions predicted at constant pH condition. The estimated rate constants and free energies are expected to validate if the fluctuation of the His-64 side-chain in HCA IX may have a significance similar to that known in the multistep catalytic cycle of HCA II.