Cargando…
Laser Ablation Nanoarchitectonics of Au–Cu Alloys Deposited on TiO(2) Photocatalyst Films for Switchable Hydrogen Evolution from Formic Acid Dehydrogenation
[Image: see text] The regulation of H(2) evolution from formic acid dehydrogenation using recyclable photocatalyst films is an essential approach for on-demand H(2) production. We have successfully generated Au–Cu nanoalloys using a laser ablation method and deposited them on TiO(2) photocatalyst fi...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453982/ https://www.ncbi.nlm.nih.gov/pubmed/36092562 http://dx.doi.org/10.1021/acsomega.2c03509 |
_version_ | 1784785253046419456 |
---|---|
author | Hong, Dachao Sharma, Aditya Jiang, Dianping Stellino, Elena Ishiyama, Tomohiro Postorino, Paolo Placidi, Ernesto Kon, Yoshihiro Koga, Kenji |
author_facet | Hong, Dachao Sharma, Aditya Jiang, Dianping Stellino, Elena Ishiyama, Tomohiro Postorino, Paolo Placidi, Ernesto Kon, Yoshihiro Koga, Kenji |
author_sort | Hong, Dachao |
collection | PubMed |
description | [Image: see text] The regulation of H(2) evolution from formic acid dehydrogenation using recyclable photocatalyst films is an essential approach for on-demand H(2) production. We have successfully generated Au–Cu nanoalloys using a laser ablation method and deposited them on TiO(2) photocatalyst films (Au(x)Cu(100–x)/TiO(2)). The Au–Cu/TiO(2) films were employed as photocatalysts for H(2) production from formic acid dehydrogenation under light-emitting diode (LED) irradiation (365 nm). The highest H(2) evolution rate for Au(20)Cu(80)/TiO(2) is archived to 62,500 μmol h(–1) g(–1) per photocatalyst weight. The remarkable performance of Au(20)Cu(80)/TiO(2) may account for the formation of Au-rich surfaces and the effect of Au alloying that enables Cu to sustain the metallic form on its surface. The metallic Au–Cu surface on TiO(2) is vital to supply the photoexcited electrons of TiO(2) to its surface for H(2) evolution. The rate-determining step (RDS) is identified as the reaction of a surface-active species with protons. The results establish a practical preparation of metal alloy deposited on photocatalyst films using laser ablation to develop efficient photocatalysts. |
format | Online Article Text |
id | pubmed-9453982 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-94539822022-09-09 Laser Ablation Nanoarchitectonics of Au–Cu Alloys Deposited on TiO(2) Photocatalyst Films for Switchable Hydrogen Evolution from Formic Acid Dehydrogenation Hong, Dachao Sharma, Aditya Jiang, Dianping Stellino, Elena Ishiyama, Tomohiro Postorino, Paolo Placidi, Ernesto Kon, Yoshihiro Koga, Kenji ACS Omega [Image: see text] The regulation of H(2) evolution from formic acid dehydrogenation using recyclable photocatalyst films is an essential approach for on-demand H(2) production. We have successfully generated Au–Cu nanoalloys using a laser ablation method and deposited them on TiO(2) photocatalyst films (Au(x)Cu(100–x)/TiO(2)). The Au–Cu/TiO(2) films were employed as photocatalysts for H(2) production from formic acid dehydrogenation under light-emitting diode (LED) irradiation (365 nm). The highest H(2) evolution rate for Au(20)Cu(80)/TiO(2) is archived to 62,500 μmol h(–1) g(–1) per photocatalyst weight. The remarkable performance of Au(20)Cu(80)/TiO(2) may account for the formation of Au-rich surfaces and the effect of Au alloying that enables Cu to sustain the metallic form on its surface. The metallic Au–Cu surface on TiO(2) is vital to supply the photoexcited electrons of TiO(2) to its surface for H(2) evolution. The rate-determining step (RDS) is identified as the reaction of a surface-active species with protons. The results establish a practical preparation of metal alloy deposited on photocatalyst films using laser ablation to develop efficient photocatalysts. American Chemical Society 2022-08-22 /pmc/articles/PMC9453982/ /pubmed/36092562 http://dx.doi.org/10.1021/acsomega.2c03509 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Hong, Dachao Sharma, Aditya Jiang, Dianping Stellino, Elena Ishiyama, Tomohiro Postorino, Paolo Placidi, Ernesto Kon, Yoshihiro Koga, Kenji Laser Ablation Nanoarchitectonics of Au–Cu Alloys Deposited on TiO(2) Photocatalyst Films for Switchable Hydrogen Evolution from Formic Acid Dehydrogenation |
title | Laser Ablation
Nanoarchitectonics of Au–Cu
Alloys Deposited on TiO(2) Photocatalyst Films for Switchable
Hydrogen Evolution from Formic Acid Dehydrogenation |
title_full | Laser Ablation
Nanoarchitectonics of Au–Cu
Alloys Deposited on TiO(2) Photocatalyst Films for Switchable
Hydrogen Evolution from Formic Acid Dehydrogenation |
title_fullStr | Laser Ablation
Nanoarchitectonics of Au–Cu
Alloys Deposited on TiO(2) Photocatalyst Films for Switchable
Hydrogen Evolution from Formic Acid Dehydrogenation |
title_full_unstemmed | Laser Ablation
Nanoarchitectonics of Au–Cu
Alloys Deposited on TiO(2) Photocatalyst Films for Switchable
Hydrogen Evolution from Formic Acid Dehydrogenation |
title_short | Laser Ablation
Nanoarchitectonics of Au–Cu
Alloys Deposited on TiO(2) Photocatalyst Films for Switchable
Hydrogen Evolution from Formic Acid Dehydrogenation |
title_sort | laser ablation
nanoarchitectonics of au–cu
alloys deposited on tio(2) photocatalyst films for switchable
hydrogen evolution from formic acid dehydrogenation |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453982/ https://www.ncbi.nlm.nih.gov/pubmed/36092562 http://dx.doi.org/10.1021/acsomega.2c03509 |
work_keys_str_mv | AT hongdachao laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation AT sharmaaditya laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation AT jiangdianping laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation AT stellinoelena laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation AT ishiyamatomohiro laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation AT postorinopaolo laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation AT placidiernesto laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation AT konyoshihiro laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation AT kogakenji laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation |