Cargando…

Laser Ablation Nanoarchitectonics of Au–Cu Alloys Deposited on TiO(2) Photocatalyst Films for Switchable Hydrogen Evolution from Formic Acid Dehydrogenation

[Image: see text] The regulation of H(2) evolution from formic acid dehydrogenation using recyclable photocatalyst films is an essential approach for on-demand H(2) production. We have successfully generated Au–Cu nanoalloys using a laser ablation method and deposited them on TiO(2) photocatalyst fi...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Dachao, Sharma, Aditya, Jiang, Dianping, Stellino, Elena, Ishiyama, Tomohiro, Postorino, Paolo, Placidi, Ernesto, Kon, Yoshihiro, Koga, Kenji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453982/
https://www.ncbi.nlm.nih.gov/pubmed/36092562
http://dx.doi.org/10.1021/acsomega.2c03509
_version_ 1784785253046419456
author Hong, Dachao
Sharma, Aditya
Jiang, Dianping
Stellino, Elena
Ishiyama, Tomohiro
Postorino, Paolo
Placidi, Ernesto
Kon, Yoshihiro
Koga, Kenji
author_facet Hong, Dachao
Sharma, Aditya
Jiang, Dianping
Stellino, Elena
Ishiyama, Tomohiro
Postorino, Paolo
Placidi, Ernesto
Kon, Yoshihiro
Koga, Kenji
author_sort Hong, Dachao
collection PubMed
description [Image: see text] The regulation of H(2) evolution from formic acid dehydrogenation using recyclable photocatalyst films is an essential approach for on-demand H(2) production. We have successfully generated Au–Cu nanoalloys using a laser ablation method and deposited them on TiO(2) photocatalyst films (Au(x)Cu(100–x)/TiO(2)). The Au–Cu/TiO(2) films were employed as photocatalysts for H(2) production from formic acid dehydrogenation under light-emitting diode (LED) irradiation (365 nm). The highest H(2) evolution rate for Au(20)Cu(80)/TiO(2) is archived to 62,500 μmol h(–1) g(–1) per photocatalyst weight. The remarkable performance of Au(20)Cu(80)/TiO(2) may account for the formation of Au-rich surfaces and the effect of Au alloying that enables Cu to sustain the metallic form on its surface. The metallic Au–Cu surface on TiO(2) is vital to supply the photoexcited electrons of TiO(2) to its surface for H(2) evolution. The rate-determining step (RDS) is identified as the reaction of a surface-active species with protons. The results establish a practical preparation of metal alloy deposited on photocatalyst films using laser ablation to develop efficient photocatalysts.
format Online
Article
Text
id pubmed-9453982
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-94539822022-09-09 Laser Ablation Nanoarchitectonics of Au–Cu Alloys Deposited on TiO(2) Photocatalyst Films for Switchable Hydrogen Evolution from Formic Acid Dehydrogenation Hong, Dachao Sharma, Aditya Jiang, Dianping Stellino, Elena Ishiyama, Tomohiro Postorino, Paolo Placidi, Ernesto Kon, Yoshihiro Koga, Kenji ACS Omega [Image: see text] The regulation of H(2) evolution from formic acid dehydrogenation using recyclable photocatalyst films is an essential approach for on-demand H(2) production. We have successfully generated Au–Cu nanoalloys using a laser ablation method and deposited them on TiO(2) photocatalyst films (Au(x)Cu(100–x)/TiO(2)). The Au–Cu/TiO(2) films were employed as photocatalysts for H(2) production from formic acid dehydrogenation under light-emitting diode (LED) irradiation (365 nm). The highest H(2) evolution rate for Au(20)Cu(80)/TiO(2) is archived to 62,500 μmol h(–1) g(–1) per photocatalyst weight. The remarkable performance of Au(20)Cu(80)/TiO(2) may account for the formation of Au-rich surfaces and the effect of Au alloying that enables Cu to sustain the metallic form on its surface. The metallic Au–Cu surface on TiO(2) is vital to supply the photoexcited electrons of TiO(2) to its surface for H(2) evolution. The rate-determining step (RDS) is identified as the reaction of a surface-active species with protons. The results establish a practical preparation of metal alloy deposited on photocatalyst films using laser ablation to develop efficient photocatalysts. American Chemical Society 2022-08-22 /pmc/articles/PMC9453982/ /pubmed/36092562 http://dx.doi.org/10.1021/acsomega.2c03509 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Hong, Dachao
Sharma, Aditya
Jiang, Dianping
Stellino, Elena
Ishiyama, Tomohiro
Postorino, Paolo
Placidi, Ernesto
Kon, Yoshihiro
Koga, Kenji
Laser Ablation Nanoarchitectonics of Au–Cu Alloys Deposited on TiO(2) Photocatalyst Films for Switchable Hydrogen Evolution from Formic Acid Dehydrogenation
title Laser Ablation Nanoarchitectonics of Au–Cu Alloys Deposited on TiO(2) Photocatalyst Films for Switchable Hydrogen Evolution from Formic Acid Dehydrogenation
title_full Laser Ablation Nanoarchitectonics of Au–Cu Alloys Deposited on TiO(2) Photocatalyst Films for Switchable Hydrogen Evolution from Formic Acid Dehydrogenation
title_fullStr Laser Ablation Nanoarchitectonics of Au–Cu Alloys Deposited on TiO(2) Photocatalyst Films for Switchable Hydrogen Evolution from Formic Acid Dehydrogenation
title_full_unstemmed Laser Ablation Nanoarchitectonics of Au–Cu Alloys Deposited on TiO(2) Photocatalyst Films for Switchable Hydrogen Evolution from Formic Acid Dehydrogenation
title_short Laser Ablation Nanoarchitectonics of Au–Cu Alloys Deposited on TiO(2) Photocatalyst Films for Switchable Hydrogen Evolution from Formic Acid Dehydrogenation
title_sort laser ablation nanoarchitectonics of au–cu alloys deposited on tio(2) photocatalyst films for switchable hydrogen evolution from formic acid dehydrogenation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9453982/
https://www.ncbi.nlm.nih.gov/pubmed/36092562
http://dx.doi.org/10.1021/acsomega.2c03509
work_keys_str_mv AT hongdachao laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation
AT sharmaaditya laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation
AT jiangdianping laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation
AT stellinoelena laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation
AT ishiyamatomohiro laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation
AT postorinopaolo laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation
AT placidiernesto laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation
AT konyoshihiro laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation
AT kogakenji laserablationnanoarchitectonicsofaucualloysdepositedontio2photocatalystfilmsforswitchablehydrogenevolutionfromformicaciddehydrogenation