Cargando…
Cross-validation of predictive models for functional recovery after post-stroke rehabilitation
BACKGROUND: Rehabilitation treatments and services are essential for the recovery of post-stroke patients’ functions; however, the increasing number of available therapies and the lack of consensus among outcome measures compromises the possibility to determine an appropriate level of evidence. Mach...
Autores principales: | Campagnini, Silvia, Liuzzi, Piergiuseppe, Mannini, Andrea, Basagni, Benedetta, Macchi, Claudio, Carrozza, Maria Chiara, Cecchi, Francesca |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454118/ https://www.ncbi.nlm.nih.gov/pubmed/36071452 http://dx.doi.org/10.1186/s12984-022-01075-7 |
Ejemplares similares
-
Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: a systematic review
por: Campagnini, Silvia, et al.
Publicado: (2022) -
Effects of control strategies on gait in robot-assisted post-stroke lower limb rehabilitation: a systematic review
por: Campagnini, Silvia, et al.
Publicado: (2022) -
Correlates of participation six months after stroke in an Italian population: results from the RIPS (Post-Stroke Intensive Rehabilitation) Study
por: CASTAGNOLI, Chiara, et al.
Publicado: (2023) -
Critical issue on the extinction and inattention subtest of NIHSS scale: an analysis on post-acute stroke patients attending inpatient rehabilitation
por: Basagni, Benedetta, et al.
Publicado: (2021) -
Predicting SARS-CoV-2 infection duration at hospital admission:a deep learning solution
por: Liuzzi, Piergiuseppe, et al.
Publicado: (2022)