Cargando…
A reinforcement learning approach for protein–ligand binding pose prediction
Protein ligand docking is an indispensable tool for computational prediction of protein functions and screening drug candidates. Despite significant progress over the past two decades, it is still a challenging problem, characterized by the still limited understanding of the energetics between prote...
Autores principales: | Wang, Chenran, Chen, Yang, Zhang, Yuan, Li, Keqiao, Lin, Menghan, Pan, Feng, Wu, Wei, Zhang, Jinfeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454149/ https://www.ncbi.nlm.nih.gov/pubmed/36076158 http://dx.doi.org/10.1186/s12859-022-04912-7 |
Ejemplares similares
-
The impact of cross-docked poses on performance of machine learning classifier for protein–ligand binding pose prediction
por: Shen, Chao, et al.
Publicado: (2021) -
Open Binding Pose Metadynamics: An Effective Approach
for the Ranking of Protein–Ligand Binding Poses
por: Lukauskis, Dominykas, et al.
Publicado: (2022) -
Cloud computing approaches for prediction of ligand binding poses and pathways
por: Lawrenz, Morgan, et al.
Publicado: (2015) -
Machine learning accelerates MD-based binding pose prediction between ligands and proteins
por: Terayama, Kei, et al.
Publicado: (2018) -
COACH-D: improved protein–ligand binding sites prediction with refined ligand-binding poses through molecular docking
por: Wu, Qi, et al.
Publicado: (2018)