Cargando…
Insights into the Atmospheric Persistence, Transformation, and Health Implications of Organophosphate Esters in Urban Ambient Air
[Image: see text] Transformation of organophosphate esters (OPEs) in natural ambient air and potential health risks from coexposure to OPEs and their transformation products are largely unclear. Therefore, a novel framework combining field-based investigation, in silico prediction, and target and su...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454243/ https://www.ncbi.nlm.nih.gov/pubmed/35948419 http://dx.doi.org/10.1021/acs.est.2c01161 |
_version_ | 1784785308365094912 |
---|---|
author | Lao, Jia-Yong Lin, Huiju Qin, Xian Ruan, Yuefei Leung, Kenneth M. Y. Zeng, Eddy Y. Lam, Paul K. S. |
author_facet | Lao, Jia-Yong Lin, Huiju Qin, Xian Ruan, Yuefei Leung, Kenneth M. Y. Zeng, Eddy Y. Lam, Paul K. S. |
author_sort | Lao, Jia-Yong |
collection | PubMed |
description | [Image: see text] Transformation of organophosphate esters (OPEs) in natural ambient air and potential health risks from coexposure to OPEs and their transformation products are largely unclear. Therefore, a novel framework combining field-based investigation, in silico prediction, and target and suspect screening was employed to understand atmospheric persistence and health impacts of OPEs. Alkyl-OPE transformation products ubiquitously occurred in urban ambient air. The transformation ratios of tris(2-butoxyethyl) phosphate were size-dependent, implying that transformation processes may be affected by particle size. Transformation products of chlorinated- and aryl-OPEs were not detected in atmospheric particles, and atmospheric dry deposition might significantly contribute to their removal. Although inhalation risk of coexposure to OPEs and transformation products in urban ambient air was low, health risks related to OPEs may be underestimated as constrained by the identification of plausible transformation products and their toxicity testing in vitro or in vivo at current stage. The present study highlights the significant impact of particle size on the atmospheric persistence of OPEs and suggests that health risk assessments should be conducted with concurrent consideration of both parental compounds and transformation products of OPEs, in view of the nonnegligible abundances of transformation products in the air and their potential toxicity in silico. |
format | Online Article Text |
id | pubmed-9454243 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-94542432022-09-09 Insights into the Atmospheric Persistence, Transformation, and Health Implications of Organophosphate Esters in Urban Ambient Air Lao, Jia-Yong Lin, Huiju Qin, Xian Ruan, Yuefei Leung, Kenneth M. Y. Zeng, Eddy Y. Lam, Paul K. S. Environ Sci Technol [Image: see text] Transformation of organophosphate esters (OPEs) in natural ambient air and potential health risks from coexposure to OPEs and their transformation products are largely unclear. Therefore, a novel framework combining field-based investigation, in silico prediction, and target and suspect screening was employed to understand atmospheric persistence and health impacts of OPEs. Alkyl-OPE transformation products ubiquitously occurred in urban ambient air. The transformation ratios of tris(2-butoxyethyl) phosphate were size-dependent, implying that transformation processes may be affected by particle size. Transformation products of chlorinated- and aryl-OPEs were not detected in atmospheric particles, and atmospheric dry deposition might significantly contribute to their removal. Although inhalation risk of coexposure to OPEs and transformation products in urban ambient air was low, health risks related to OPEs may be underestimated as constrained by the identification of plausible transformation products and their toxicity testing in vitro or in vivo at current stage. The present study highlights the significant impact of particle size on the atmospheric persistence of OPEs and suggests that health risk assessments should be conducted with concurrent consideration of both parental compounds and transformation products of OPEs, in view of the nonnegligible abundances of transformation products in the air and their potential toxicity in silico. American Chemical Society 2022-08-10 2022-09-06 /pmc/articles/PMC9454243/ /pubmed/35948419 http://dx.doi.org/10.1021/acs.est.2c01161 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Lao, Jia-Yong Lin, Huiju Qin, Xian Ruan, Yuefei Leung, Kenneth M. Y. Zeng, Eddy Y. Lam, Paul K. S. Insights into the Atmospheric Persistence, Transformation, and Health Implications of Organophosphate Esters in Urban Ambient Air |
title | Insights into the
Atmospheric Persistence, Transformation,
and Health Implications of Organophosphate Esters in Urban Ambient
Air |
title_full | Insights into the
Atmospheric Persistence, Transformation,
and Health Implications of Organophosphate Esters in Urban Ambient
Air |
title_fullStr | Insights into the
Atmospheric Persistence, Transformation,
and Health Implications of Organophosphate Esters in Urban Ambient
Air |
title_full_unstemmed | Insights into the
Atmospheric Persistence, Transformation,
and Health Implications of Organophosphate Esters in Urban Ambient
Air |
title_short | Insights into the
Atmospheric Persistence, Transformation,
and Health Implications of Organophosphate Esters in Urban Ambient
Air |
title_sort | insights into the
atmospheric persistence, transformation,
and health implications of organophosphate esters in urban ambient
air |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454243/ https://www.ncbi.nlm.nih.gov/pubmed/35948419 http://dx.doi.org/10.1021/acs.est.2c01161 |
work_keys_str_mv | AT laojiayong insightsintotheatmosphericpersistencetransformationandhealthimplicationsoforganophosphateestersinurbanambientair AT linhuiju insightsintotheatmosphericpersistencetransformationandhealthimplicationsoforganophosphateestersinurbanambientair AT qinxian insightsintotheatmosphericpersistencetransformationandhealthimplicationsoforganophosphateestersinurbanambientair AT ruanyuefei insightsintotheatmosphericpersistencetransformationandhealthimplicationsoforganophosphateestersinurbanambientair AT leungkennethmy insightsintotheatmosphericpersistencetransformationandhealthimplicationsoforganophosphateestersinurbanambientair AT zengeddyy insightsintotheatmosphericpersistencetransformationandhealthimplicationsoforganophosphateestersinurbanambientair AT lampaulks insightsintotheatmosphericpersistencetransformationandhealthimplicationsoforganophosphateestersinurbanambientair |