Cargando…
A more effective CT synthesizer using transformers for cone-beam CT-guided adaptive radiotherapy
PURPOSE: The challenge of cone-beam computed tomography (CBCT) is its low image quality, which limits its application for adaptive radiotherapy (ART). Despite recent substantial improvement in CBCT imaging using the deep learning method, the image quality still needs to be improved for effective ART...
Autores principales: | Chen, Xinyuan, Liu, Yuxiang, Yang, Bining, Zhu, Ji, Yuan, Siqi, Xie, Xuejie, Liu, Yueping, Dai, Jianrong, Men, Kuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454309/ https://www.ncbi.nlm.nih.gov/pubmed/36091131 http://dx.doi.org/10.3389/fonc.2022.988800 |
Ejemplares similares
-
Comprehensive evaluation of similarity between synthetic and real CT images for nasopharyngeal carcinoma
por: Yuan, Siqi, et al.
Publicado: (2023) -
A Projection Quality-Driven Tube Current Modulation Method in Cone-Beam CT for IGRT: Proof of Concept
por: Men, Kuo, et al.
Publicado: (2017) -
Combining distance and anatomical information for deep-learning based dose distribution predictions for nasopharyngeal cancer radiotherapy planning
por: Chen, Xinyuan, et al.
Publicado: (2023) -
Imaging Study of Pseudo-CT Synthesized From Cone-Beam CT Based on 3D CycleGAN in Radiotherapy
por: Sun, Hongfei, et al.
Publicado: (2021) -
Evaluation of Automatic Segmentation Model With Dosimetric Metrics for Radiotherapy of Esophageal Cancer
por: Zhu, Ji, et al.
Publicado: (2020)