Cargando…
Salinity-Driven Changes in Behavioral Responses of Catadromous Eriocher sinensis
SIMPLE SUMMARY: Salinity is an important environmental factor which can influence the behavior of Eriocheir sinensis. In this study, female crabs were more active in a saline environment, especially low salinity stress, and the changes of antennae were obviously different under salinity shifts. Inte...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454515/ https://www.ncbi.nlm.nih.gov/pubmed/36077964 http://dx.doi.org/10.3390/ani12172244 |
Sumario: | SIMPLE SUMMARY: Salinity is an important environmental factor which can influence the behavior of Eriocheir sinensis. In this study, female crabs were more active in a saline environment, especially low salinity stress, and the changes of antennae were obviously different under salinity shifts. Interestingly, E. sinensis had obvious behavioral differences in the high and low salinity stress, suggesting E. sinensis has different behaviors to adapt to the change of water salinity. ABSTRACT: The effects of salinity on behavior are far-reaching, and Eriocheir sinensis showed disparate behaviors under different salinity conditions. Female crabs were more active in saline water, especially low salinity stress, which is beneficial for female crabs to escape from the low-salinity environment quickly. Then, antennal movement indicated that antennae might be the main osmoreceptors in E. sinensis, and 65 min might be a good starting time for salinity stress to analyze osmoregulation in crabs. Interestingly, E. sinensis had obvious behavioral differences in the high and low salinity stress, and behaviors were more intense in a salinity dip from salinity 18 to salinity 0. This study analyzed the osmoregulatory process of catadromous E. sinensis in different salinity from the point of osmoregulatory organ and behavioral response. These results will provide a scientific basis for the osmoregulatory mechanism of E. sinensis, which are conducive to evaluating and analyzing the impact of saltwater intrusion in the Yangtze River estuary on resource fluctuation. |
---|