Cargando…
Self-Supervised Adversarial Learning with a Limited Dataset for Electronic Cleansing in Computed Tomographic Colonography: A Preliminary Feasibility Study
SIMPLE SUMMARY: Electronic cleansing (EC) is used for performing a virtual cleansing of the colon on CT colonography (CTC) images for colorectal cancer screening. However, current EC methods have limited accuracy, and traditional deep learning is of limited use in CTC. We evaluated the feasibility o...
Autores principales: | Tachibana, Rie, Näppi, Janne J., Hironaka, Toru, Yoshida, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454562/ https://www.ncbi.nlm.nih.gov/pubmed/36077662 http://dx.doi.org/10.3390/cancers14174125 |
Ejemplares similares
-
A simple image processing approach for electronic cleansing in computed tomographic colonography
por: Yamamoto, S, et al.
Publicado: (2009) -
A generative flow-based model for volumetric data augmentation in 3D deep learning for computed tomographic colonography
por: Uemura, Tomoki, et al.
Publicado: (2020) -
Weakly unsupervised conditional generative adversarial network for image-based prognostic prediction for COVID-19 patients based on chest CT
por: Uemura, Tomoki, et al.
Publicado: (2021) -
Electronic cleansing of tagged residue in CT colonography: what radiologists need to know
por: Mang, Thomas, et al.
Publicado: (2020) -
Colorectal Laterally Spreading Tumors by Computed Tomographic Colonography
por: Kakugawa, Yasuo, et al.
Publicado: (2013)