Cargando…
ResSUMO: A Deep Learning Architecture Based on Residual Structure for Prediction of Lysine SUMOylation Sites
Lysine SUMOylation plays an essential role in various biological functions. Several approaches integrating various algorithms have been developed for predicting SUMOylation sites based on a limited dataset. Recently, the number of identified SUMOylation sites has significantly increased due to inves...
Autores principales: | Zhu, Yafei, Liu, Yuhai, Chen, Yu, Li, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454673/ https://www.ncbi.nlm.nih.gov/pubmed/36078053 http://dx.doi.org/10.3390/cells11172646 |
Ejemplares similares
-
GPS-SUMO: a tool for the prediction of sumoylation sites and SUMO-interaction motifs
por: Zhao, Qi, et al.
Publicado: (2014) -
HseSUMO: Sumoylation site prediction using half-sphere exposures of amino acids residues
por: Sharma, Alok, et al.
Publicado: (2019) -
SUMOhunt: Combining Spatial Staging between Lysine and SUMO with Random Forests to Predict SUMOylation
por: Ijaz, Amna
Publicado: (2013) -
Analysis of SUMOylated proteins using SUMO-traps
por: Da Silva-Ferrada, Elisa, et al.
Publicado: (2013) -
SUMO and SUMOylation Pathway at the Forefront of Host Immune Response
por: K., Sajeev T., et al.
Publicado: (2021)