Cargando…
Risk Stratification for Breast Cancer Patient by Simultaneous Learning of Molecular Subtype and Survival Outcome Using Genetic Algorithm-Based Gene Set Selection†
SIMPLE SUMMARY: Patient stratification is clinically important because it allows us to understand the characteristics and establish treatment strategies for a group. Transcriptomic data play an important role in determining molecular subtypes and predicting survival. In the case of breast cancer, al...
Autores principales: | Koo, Bonil, Lee, Dohoon, Lee, Sangseon, Sung, Inyoung, Kim, Sun, Lee, Sunho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454699/ https://www.ncbi.nlm.nih.gov/pubmed/36077657 http://dx.doi.org/10.3390/cancers14174120 |
Ejemplares similares
-
Metheor: Ultrafast DNA methylation heterogeneity calculation from bisulfite read alignments
por: Lee, Dohoon, et al.
Publicado: (2023) -
Learning Cell-Type-Specific Gene Regulation Mechanisms by Multi-Attention Based Deep Learning With Regulatory Latent Space
por: Kang, Minji, et al.
Publicado: (2020) -
PRISM: methylation pattern-based, reference-free inference of subclonal makeup
por: Lee, Dohoon, et al.
Publicado: (2019) -
AutoCoV: tracking the early spread of COVID-19 in terms of the spatial and temporal patterns from embedding space by K-mer based deep learning
por: Sung, Inyoung, et al.
Publicado: (2022) -
Deep hierarchical embedding for simultaneous modeling of GPCR proteins in a unified metric space
por: Lee, Taeheon, et al.
Publicado: (2021)