Cargando…

A Novel Artificial Intelligence-Based Approach for Quantitative Assessment of Angiogenesis in the Ex Ovo CAM Model

SIMPLE SUMMARY: Angiogenesis is crucial in tissue regeneration and a relevant factor in tumor growth. Consequently, there is a demand for methods to assess angiogenesis. The chorioallantoic membrane (CAM) assay is a widely used in vivo model for the study of angiogenesis. However, there is no establ...

Descripción completa

Detalles Bibliográficos
Autores principales: Faihs, Lorenz, Firouz, Bardia, Slezak, Paul, Slezak, Cyrill, Weißensteiner, Michael, Ebner, Thomas, Ghaffari Tabrizi-Wizsy, Nassim, Schicho, Kurt, Dungel, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454718/
https://www.ncbi.nlm.nih.gov/pubmed/36077809
http://dx.doi.org/10.3390/cancers14174273
Descripción
Sumario:SIMPLE SUMMARY: Angiogenesis is crucial in tissue regeneration and a relevant factor in tumor growth. Consequently, there is a demand for methods to assess angiogenesis. The chorioallantoic membrane (CAM) assay is a widely used in vivo model for the study of angiogenesis. However, there is no established gold standard to evaluate the vascularisation of the CAM, which limits the comparability of the different studies. In this manuscript, we present a novel approach to address this topic. ABSTRACT: Angiogenesis is a highly regulated process. It promotes tissue regeneration and contributes to tumor growth. Existing therapeutic concepts interfere with different steps of angiogenesis. The quantification of the vasculature is of crucial importance for research on angiogenetic effects. The chorioallantoic membrane (CAM) assay is widely used in the study of angiogenesis. Ex ovo cultured chick embryos develop an easily accessible, highly vascularised membrane on the surface. Tumor xenografts can be incubated on this membrane enabling studies on cancer angiogenesis and other major hallmarks. However, there is no commonly accepted gold standard for the quantification of the vasculature of the CAM. We compared four widely used measurement techniques to identify the most appropriate one for the quantification of the vascular network of the CAM. The comparison of the different quantification methods suggested that the CAM assay application on the IKOSA platform is the most suitable image analysis application for the vasculature of the CAM. The new CAM application on the IKOSA platform turned out to be a reliable and feasible tool for practical use in angiogenesis research. This novel image analysis software enables a deeper exploration of various aspects of angiogenesis and might support future research on new anti-angiogenic strategies for cancer treatment.