Cargando…
Clinically Applicable Pathological Diagnosis System for Cell Clumps in Endometrial Cancer Screening via Deep Convolutional Neural Networks
SIMPLE SUMMARY: The soaring demand for endometrial cancer screening has exposed a huge shortage of cytopathologists worldwide. Deep learning algorithms, based on convolutional neural networks, have been successfully applied to the classification and segmentation of medical images. The aim was to est...
Autores principales: | Li, Qing, Wang, Ruijie, Xie, Zhonglin, Zhao, Lanbo, Wang, Yiran, Sun, Chao, Han, Lu, Liu, Yu, Hou, Huilian, Liu, Chen, Zhang, Guanjun, Shi, Guizhi, Zhong, Dexing, Li, Qiling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454725/ https://www.ncbi.nlm.nih.gov/pubmed/36077646 http://dx.doi.org/10.3390/cancers14174109 |
Ejemplares similares
-
Micro‐histology combined with cytology improves the diagnostic accuracy of endometrial lesions
por: Wang, Yiran, et al.
Publicado: (2023) -
Validation of Molecular Typing for Endometrial Screening Test That Predicts Benign and Malignant Lesions
por: Tuo, Xiaoqian, et al.
Publicado: (2019) -
A Clinical Comparative Study of Two Different Endometrial Cell Samplers for Evaluation of Endometrial Lesions by Cytopathological Diagnosis
por: Lv, Shulan, et al.
Publicado: (2020) -
Clinical Evaluation of Li Brush Endometrial Samplers for Diagnosing Endometrial Lesions in Women With Intrauterine Devices
por: Han, Lu, et al.
Publicado: (2020) -
An Efficacious Endometrial Sampler for Screening Endometrial Cancer
por: Han, Lu, et al.
Publicado: (2019)