Cargando…

Loss of Flocculus Purkinje Cell Firing Precision Leads to Impaired Gaze Stabilization in a Mouse Model of Spinocerebellar Ataxia Type 6 (SCA6)

Spinocerebellar Ataxia Type 6 (SCA6) is a mid-life onset neurodegenerative disease characterized by progressive ataxia, dysarthria, and eye movement impairment. This autosomal dominant disease is caused by the expansion of a CAG repeat tract in the CACNA1A gene that encodes the α1A subunit of the P/...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Hui Ho Vanessa, Cook, Anna A., Watt, Alanna J., Cullen, Kathleen E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454745/
https://www.ncbi.nlm.nih.gov/pubmed/36078147
http://dx.doi.org/10.3390/cells11172739
Descripción
Sumario:Spinocerebellar Ataxia Type 6 (SCA6) is a mid-life onset neurodegenerative disease characterized by progressive ataxia, dysarthria, and eye movement impairment. This autosomal dominant disease is caused by the expansion of a CAG repeat tract in the CACNA1A gene that encodes the α1A subunit of the P/Q type voltage-gated Ca(2+) channel. Mouse models of SCA6 demonstrate impaired locomotive function and reduced firing precision of cerebellar Purkinje in the anterior vermis. Here, to further assess deficits in other cerebellar-dependent behaviors, we characterized the oculomotor phenotype of a knock-in mouse model with hyper-expanded polyQ repeats (SCA6(84Q)). We found a reduction in the efficacy of the vestibulo-ocular reflex (VOR) and optokinetic reflex (OKR) in SCA6 mutant mice, without a change in phase, compared to their litter-matched controls. Additionally, VOR motor learning was significantly impaired in SCA6(84Q) mice. Given that the floccular lobe of the cerebellum plays a vital role in the generation of OKR and VOR calibration and motor learning, we investigated the firing behavior and morphology of floccular cerebellar Purkinje cells. Overall, we found a reduction in the firing precision of floccular lobe Purkinje cells but no morphological difference between SCA6(84Q) and wild-type mice. Taken together, our findings establish that gaze stabilization and motor learning are impaired in SCA6(84Q) mice and suggest that altered cerebellar output contributes to these deficits.