Cargando…
Data augmentation and deep neural networks for the classification of Pakistani racial speakers recognition
Speech emotion recognition (SER) systems have evolved into an important method for recognizing a person in several applications, including e-commerce, everyday interactions, law enforcement, and forensics. The SER system’s efficiency depends on the length of the audio samples used for testing and tr...
Autores principales: | Amjad, Ammar, Khan, Lal, Chang, Hsien-Tsung |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454772/ https://www.ncbi.nlm.nih.gov/pubmed/36091976 http://dx.doi.org/10.7717/peerj-cs.1053 |
Ejemplares similares
-
Effect on speech emotion classification of a feature selection approach using a convolutional neural network
por: Amjad, Ammar, et al.
Publicado: (2021) -
Deep convolutional neural networks for regular texture recognition
por: Liu, Ni, et al.
Publicado: (2022) -
Modelling Speaker Attribution in Narrative Texts With Biased and Bias-Adjustable Neural Networks
por: Dönicke, Tillmann, et al.
Publicado: (2022) -
A deep crowd density classification model for Hajj pilgrimage using fully convolutional neural network
por: Bhuiyan, Md Roman, et al.
Publicado: (2022) -
EmotionNet Nano: An Efficient Deep Convolutional Neural Network Design for Real-Time Facial Expression Recognition
por: Lee, James Ren, et al.
Publicado: (2021)