Cargando…
Self-supervised global context graph neural network for session-based recommendation
Session-based recommendation (SBR) aims to recommend the next items based on anonymous behavior sequences over a short period of time. Compared with other recommendation paradigms, the information available in SBR is very limited. Therefore, capturing the item relations across sessions is crucial fo...
Autores principales: | Chu, Fei, Jia, Caiyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454781/ https://www.ncbi.nlm.nih.gov/pubmed/36092007 http://dx.doi.org/10.7717/peerj-cs.1055 |
Ejemplares similares
-
Graph neural networks for preference social recommendation
por: Ma, Gang-Feng, et al.
Publicado: (2023) -
A Recommender for Research Collaborators Using Graph Neural Networks
por: Zhu, Jie, et al.
Publicado: (2022) -
Graph Neural Networks for Maximum Constraint Satisfaction
por: Tönshoff, Jan, et al.
Publicado: (2021) -
Generalizable Machine Learning in Neuroscience Using Graph Neural Networks
por: Wang, Paul Y., et al.
Publicado: (2021) -
A dynamic graph Hawkes process based on linear complexity self-attention for dynamic recommender systems
por: Hou, Zhiwen, et al.
Publicado: (2023)