Cargando…
A Subset of Secreted Proteins in Ascites Can Predict Platinum-Free Interval in Ovarian Cancer
SIMPLE SUMMARY: Identifying proteins that correlate with better or worse outcomes may help to identify new treatment approaches for advanced high-grade serous ovarian cancer. Here, we utilize a machine learning technique to correlate the levels of 58 secreted proteins in tumor ascites with the time...
Autores principales: | Carroll, Molly J., Kaipio, Katja, Hynninen, Johanna, Carpen, Olli, Hautaniemi, Sampsa, Page, David, Kreeger, Pamela K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454800/ https://www.ncbi.nlm.nih.gov/pubmed/36077825 http://dx.doi.org/10.3390/cancers14174291 |
Ejemplares similares
-
qSNE: quadratic rate t-SNE optimizer with automatic parameter tuning for large datasets
por: Häkkinen, Antti, et al.
Publicado: (2020) -
Agile workflow for interactive analysis of mass cytometry data
por: Casado, Julia, et al.
Publicado: (2020) -
Longitudinal single-cell RNA-seq analysis reveals stress-promoted chemoresistance in metastatic ovarian cancer
por: Zhang, Kaiyang, et al.
Publicado: (2022) -
PRISM: recovering cell-type-specific expression profiles from individual composite RNA-seq samples
por: Häkkinen, Antti, et al.
Publicado: (2021) -
Co-evolution of matrisome and adaptive adhesion dynamics drives ovarian cancer chemoresistance
por: Pietilä, Elina A., et al.
Publicado: (2021)