Cargando…
Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation
SIMPLE SUMMARY: Autochthonous fruits with naturally active chemicals such as polyphenols and tannins have been used in animal feeds to cure animal diseases due to their beneficial effects. This study aims to determine the effect of autochthonous Nepalese fruits on nutrient degradation, fermentation...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454832/ https://www.ncbi.nlm.nih.gov/pubmed/36077918 http://dx.doi.org/10.3390/ani12172199 |
_version_ | 1784785444983013376 |
---|---|
author | Dhakal, Rajan Ronquillo, Manuel Gonzalez Vargas-Bello-Pérez, Einar Hansen, Hanne Helene |
author_facet | Dhakal, Rajan Ronquillo, Manuel Gonzalez Vargas-Bello-Pérez, Einar Hansen, Hanne Helene |
author_sort | Dhakal, Rajan |
collection | PubMed |
description | SIMPLE SUMMARY: Autochthonous fruits with naturally active chemicals such as polyphenols and tannins have been used in animal feeds to cure animal diseases due to their beneficial effects. This study aims to determine the effect of autochthonous Nepalese fruits on nutrient degradation, fermentation kinetics, total gas production, and methane production in in-vitro rumen fermentation. We found that the addition of Nepalese autochthonous fruits increases total fatty acid concentration and decreases methane production with increasing doses. ABSTRACT: The objective of this study was to determine the effect of autochthonous Nepalese fruits on nutrient degradation, fermentation kinetics, total gas production, and methane production in in-vitro rumen fermentation. The fruits of Terminalia chebula (HA), Terminalia bellirica (BA), and Triphala churna (TC), a commercial mixture with equal parts (33.3% DM basis) of Phyllanthus emblica, Terminalia bellirica, and Terminalia chebula, were used. These were tested at three inclusion levels of 20% 40% and 100% of the total sample (as dry matter) in maize silage (MS). MS was used as a control (0% additive). These 10 treatments were tested for two 48-h incubations with quadruplicate samples using rumen fluid from 2 heifers. Total gas production (TGP: mL at standard temperature and pressure (STP)/g DM), methane production (expressed as % and mL/g DM), and volatile fatty acids were determined. After incubations, the filtrate was used to measure pH and volatile fatty acids (VFA), while the residue was used to measure degraded dry matter (dDM) and calculate the partitioning factor (PF48) and theoretical short-chain fatty acid concentration (tVFA). Rumen fluid pH linearly (p < 0.01) decreased in all treatments with increasing dose during fermentation. The CH(4)% was less in all three treatments with 100% autochthonous plants than in control, but there were no significant linear or quadratic effects for increasing BA, HA, and TC doses. The PF48 increased for all treatments with a significant linear and quadratic effect (p < 0.05) of increasing dose. Compared to MS, the inclusion of autochthonous plants increased the total volatile fatty acids, with no significant dose effects. The tVFA linearly decreased (p > 0.05) with an increasing dose of BA and HA. All treatments showed quadratic effects on tVFA (p < 0.05) with increasing dose. Increasing TC dose linearly (p < 0.05) and quadratically (p < 0.05) increased total VFA, while increasing HA dose had only a quadratic (p < 0.05) effect on total VFA. All treatments reduced total gas production (TGP) and methane concentration (CH(4)%) when compared to MS. The tested autochthonous fruits can be used as additives with a basal feed diet to reduce enteric methane emissions. The most effective anti-methanogenic treatment was 40% HA, which resulted in 18% methane reduction. |
format | Online Article Text |
id | pubmed-9454832 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94548322022-09-09 Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation Dhakal, Rajan Ronquillo, Manuel Gonzalez Vargas-Bello-Pérez, Einar Hansen, Hanne Helene Animals (Basel) Article SIMPLE SUMMARY: Autochthonous fruits with naturally active chemicals such as polyphenols and tannins have been used in animal feeds to cure animal diseases due to their beneficial effects. This study aims to determine the effect of autochthonous Nepalese fruits on nutrient degradation, fermentation kinetics, total gas production, and methane production in in-vitro rumen fermentation. We found that the addition of Nepalese autochthonous fruits increases total fatty acid concentration and decreases methane production with increasing doses. ABSTRACT: The objective of this study was to determine the effect of autochthonous Nepalese fruits on nutrient degradation, fermentation kinetics, total gas production, and methane production in in-vitro rumen fermentation. The fruits of Terminalia chebula (HA), Terminalia bellirica (BA), and Triphala churna (TC), a commercial mixture with equal parts (33.3% DM basis) of Phyllanthus emblica, Terminalia bellirica, and Terminalia chebula, were used. These were tested at three inclusion levels of 20% 40% and 100% of the total sample (as dry matter) in maize silage (MS). MS was used as a control (0% additive). These 10 treatments were tested for two 48-h incubations with quadruplicate samples using rumen fluid from 2 heifers. Total gas production (TGP: mL at standard temperature and pressure (STP)/g DM), methane production (expressed as % and mL/g DM), and volatile fatty acids were determined. After incubations, the filtrate was used to measure pH and volatile fatty acids (VFA), while the residue was used to measure degraded dry matter (dDM) and calculate the partitioning factor (PF48) and theoretical short-chain fatty acid concentration (tVFA). Rumen fluid pH linearly (p < 0.01) decreased in all treatments with increasing dose during fermentation. The CH(4)% was less in all three treatments with 100% autochthonous plants than in control, but there were no significant linear or quadratic effects for increasing BA, HA, and TC doses. The PF48 increased for all treatments with a significant linear and quadratic effect (p < 0.05) of increasing dose. Compared to MS, the inclusion of autochthonous plants increased the total volatile fatty acids, with no significant dose effects. The tVFA linearly decreased (p > 0.05) with an increasing dose of BA and HA. All treatments showed quadratic effects on tVFA (p < 0.05) with increasing dose. Increasing TC dose linearly (p < 0.05) and quadratically (p < 0.05) increased total VFA, while increasing HA dose had only a quadratic (p < 0.05) effect on total VFA. All treatments reduced total gas production (TGP) and methane concentration (CH(4)%) when compared to MS. The tested autochthonous fruits can be used as additives with a basal feed diet to reduce enteric methane emissions. The most effective anti-methanogenic treatment was 40% HA, which resulted in 18% methane reduction. MDPI 2022-08-26 /pmc/articles/PMC9454832/ /pubmed/36077918 http://dx.doi.org/10.3390/ani12172199 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Dhakal, Rajan Ronquillo, Manuel Gonzalez Vargas-Bello-Pérez, Einar Hansen, Hanne Helene Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation |
title | Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation |
title_full | Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation |
title_fullStr | Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation |
title_full_unstemmed | Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation |
title_short | Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation |
title_sort | effect of autochthonous nepalese fruits on nutrient degradation, fermentation kinetics, total gas production, and methane production in in-vitro rumen fermentation |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454832/ https://www.ncbi.nlm.nih.gov/pubmed/36077918 http://dx.doi.org/10.3390/ani12172199 |
work_keys_str_mv | AT dhakalrajan effectofautochthonousnepalesefruitsonnutrientdegradationfermentationkineticstotalgasproductionandmethaneproductionininvitrorumenfermentation AT ronquillomanuelgonzalez effectofautochthonousnepalesefruitsonnutrientdegradationfermentationkineticstotalgasproductionandmethaneproductionininvitrorumenfermentation AT vargasbelloperezeinar effectofautochthonousnepalesefruitsonnutrientdegradationfermentationkineticstotalgasproductionandmethaneproductionininvitrorumenfermentation AT hansenhannehelene effectofautochthonousnepalesefruitsonnutrientdegradationfermentationkineticstotalgasproductionandmethaneproductionininvitrorumenfermentation |