Cargando…

Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation

SIMPLE SUMMARY: Autochthonous fruits with naturally active chemicals such as polyphenols and tannins have been used in animal feeds to cure animal diseases due to their beneficial effects. This study aims to determine the effect of autochthonous Nepalese fruits on nutrient degradation, fermentation...

Descripción completa

Detalles Bibliográficos
Autores principales: Dhakal, Rajan, Ronquillo, Manuel Gonzalez, Vargas-Bello-Pérez, Einar, Hansen, Hanne Helene
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454832/
https://www.ncbi.nlm.nih.gov/pubmed/36077918
http://dx.doi.org/10.3390/ani12172199
_version_ 1784785444983013376
author Dhakal, Rajan
Ronquillo, Manuel Gonzalez
Vargas-Bello-Pérez, Einar
Hansen, Hanne Helene
author_facet Dhakal, Rajan
Ronquillo, Manuel Gonzalez
Vargas-Bello-Pérez, Einar
Hansen, Hanne Helene
author_sort Dhakal, Rajan
collection PubMed
description SIMPLE SUMMARY: Autochthonous fruits with naturally active chemicals such as polyphenols and tannins have been used in animal feeds to cure animal diseases due to their beneficial effects. This study aims to determine the effect of autochthonous Nepalese fruits on nutrient degradation, fermentation kinetics, total gas production, and methane production in in-vitro rumen fermentation. We found that the addition of Nepalese autochthonous fruits increases total fatty acid concentration and decreases methane production with increasing doses. ABSTRACT: The objective of this study was to determine the effect of autochthonous Nepalese fruits on nutrient degradation, fermentation kinetics, total gas production, and methane production in in-vitro rumen fermentation. The fruits of Terminalia chebula (HA), Terminalia bellirica (BA), and Triphala churna (TC), a commercial mixture with equal parts (33.3% DM basis) of Phyllanthus emblica, Terminalia bellirica, and Terminalia chebula, were used. These were tested at three inclusion levels of 20% 40% and 100% of the total sample (as dry matter) in maize silage (MS). MS was used as a control (0% additive). These 10 treatments were tested for two 48-h incubations with quadruplicate samples using rumen fluid from 2 heifers. Total gas production (TGP: mL at standard temperature and pressure (STP)/g DM), methane production (expressed as % and mL/g DM), and volatile fatty acids were determined. After incubations, the filtrate was used to measure pH and volatile fatty acids (VFA), while the residue was used to measure degraded dry matter (dDM) and calculate the partitioning factor (PF48) and theoretical short-chain fatty acid concentration (tVFA). Rumen fluid pH linearly (p < 0.01) decreased in all treatments with increasing dose during fermentation. The CH(4)% was less in all three treatments with 100% autochthonous plants than in control, but there were no significant linear or quadratic effects for increasing BA, HA, and TC doses. The PF48 increased for all treatments with a significant linear and quadratic effect (p < 0.05) of increasing dose. Compared to MS, the inclusion of autochthonous plants increased the total volatile fatty acids, with no significant dose effects. The tVFA linearly decreased (p > 0.05) with an increasing dose of BA and HA. All treatments showed quadratic effects on tVFA (p < 0.05) with increasing dose. Increasing TC dose linearly (p < 0.05) and quadratically (p < 0.05) increased total VFA, while increasing HA dose had only a quadratic (p < 0.05) effect on total VFA. All treatments reduced total gas production (TGP) and methane concentration (CH(4)%) when compared to MS. The tested autochthonous fruits can be used as additives with a basal feed diet to reduce enteric methane emissions. The most effective anti-methanogenic treatment was 40% HA, which resulted in 18% methane reduction.
format Online
Article
Text
id pubmed-9454832
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-94548322022-09-09 Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation Dhakal, Rajan Ronquillo, Manuel Gonzalez Vargas-Bello-Pérez, Einar Hansen, Hanne Helene Animals (Basel) Article SIMPLE SUMMARY: Autochthonous fruits with naturally active chemicals such as polyphenols and tannins have been used in animal feeds to cure animal diseases due to their beneficial effects. This study aims to determine the effect of autochthonous Nepalese fruits on nutrient degradation, fermentation kinetics, total gas production, and methane production in in-vitro rumen fermentation. We found that the addition of Nepalese autochthonous fruits increases total fatty acid concentration and decreases methane production with increasing doses. ABSTRACT: The objective of this study was to determine the effect of autochthonous Nepalese fruits on nutrient degradation, fermentation kinetics, total gas production, and methane production in in-vitro rumen fermentation. The fruits of Terminalia chebula (HA), Terminalia bellirica (BA), and Triphala churna (TC), a commercial mixture with equal parts (33.3% DM basis) of Phyllanthus emblica, Terminalia bellirica, and Terminalia chebula, were used. These were tested at three inclusion levels of 20% 40% and 100% of the total sample (as dry matter) in maize silage (MS). MS was used as a control (0% additive). These 10 treatments were tested for two 48-h incubations with quadruplicate samples using rumen fluid from 2 heifers. Total gas production (TGP: mL at standard temperature and pressure (STP)/g DM), methane production (expressed as % and mL/g DM), and volatile fatty acids were determined. After incubations, the filtrate was used to measure pH and volatile fatty acids (VFA), while the residue was used to measure degraded dry matter (dDM) and calculate the partitioning factor (PF48) and theoretical short-chain fatty acid concentration (tVFA). Rumen fluid pH linearly (p < 0.01) decreased in all treatments with increasing dose during fermentation. The CH(4)% was less in all three treatments with 100% autochthonous plants than in control, but there were no significant linear or quadratic effects for increasing BA, HA, and TC doses. The PF48 increased for all treatments with a significant linear and quadratic effect (p < 0.05) of increasing dose. Compared to MS, the inclusion of autochthonous plants increased the total volatile fatty acids, with no significant dose effects. The tVFA linearly decreased (p > 0.05) with an increasing dose of BA and HA. All treatments showed quadratic effects on tVFA (p < 0.05) with increasing dose. Increasing TC dose linearly (p < 0.05) and quadratically (p < 0.05) increased total VFA, while increasing HA dose had only a quadratic (p < 0.05) effect on total VFA. All treatments reduced total gas production (TGP) and methane concentration (CH(4)%) when compared to MS. The tested autochthonous fruits can be used as additives with a basal feed diet to reduce enteric methane emissions. The most effective anti-methanogenic treatment was 40% HA, which resulted in 18% methane reduction. MDPI 2022-08-26 /pmc/articles/PMC9454832/ /pubmed/36077918 http://dx.doi.org/10.3390/ani12172199 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Dhakal, Rajan
Ronquillo, Manuel Gonzalez
Vargas-Bello-Pérez, Einar
Hansen, Hanne Helene
Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation
title Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation
title_full Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation
title_fullStr Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation
title_full_unstemmed Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation
title_short Effect of Autochthonous Nepalese Fruits on Nutrient Degradation, Fermentation Kinetics, Total Gas Production, and Methane Production in In-Vitro Rumen Fermentation
title_sort effect of autochthonous nepalese fruits on nutrient degradation, fermentation kinetics, total gas production, and methane production in in-vitro rumen fermentation
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454832/
https://www.ncbi.nlm.nih.gov/pubmed/36077918
http://dx.doi.org/10.3390/ani12172199
work_keys_str_mv AT dhakalrajan effectofautochthonousnepalesefruitsonnutrientdegradationfermentationkineticstotalgasproductionandmethaneproductionininvitrorumenfermentation
AT ronquillomanuelgonzalez effectofautochthonousnepalesefruitsonnutrientdegradationfermentationkineticstotalgasproductionandmethaneproductionininvitrorumenfermentation
AT vargasbelloperezeinar effectofautochthonousnepalesefruitsonnutrientdegradationfermentationkineticstotalgasproductionandmethaneproductionininvitrorumenfermentation
AT hansenhannehelene effectofautochthonousnepalesefruitsonnutrientdegradationfermentationkineticstotalgasproductionandmethaneproductionininvitrorumenfermentation