Cargando…
ER Stress Response and Induction of Apoptosis in Malignant Pleural Mesothelioma: The Achilles Heel Targeted by the Anticancer Ruthenium Drug BOLD-100
SIMPLE SUMMARY: Malignant mesothelioma is a rare cancer arising from the serosal surfaces of the body, mainly from the pleural layer. This cancer, strongly linked to asbestos exposure, shows a very inauspicious prognosis. In fact, there is no efficient therapeutic treatment for malignant pleural mes...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454852/ https://www.ncbi.nlm.nih.gov/pubmed/36077664 http://dx.doi.org/10.3390/cancers14174126 |
_version_ | 1784785449890349056 |
---|---|
author | Ranzato, Elia Bonsignore, Gregorio Martinotti, Simona |
author_facet | Ranzato, Elia Bonsignore, Gregorio Martinotti, Simona |
author_sort | Ranzato, Elia |
collection | PubMed |
description | SIMPLE SUMMARY: Malignant mesothelioma is a rare cancer arising from the serosal surfaces of the body, mainly from the pleural layer. This cancer, strongly linked to asbestos exposure, shows a very inauspicious prognosis. In fact, there is no efficient therapeutic treatment for malignant pleural mesothelioma (MPM). Thus, there is an urgent need to develop novel therapeutic approaches to treat this form of cancer. Our previous study showed the importance of GRP78 in MPM survival. BOLD-100 is a specific modulator of GRP78 and we have observed that it shows cytotoxicity against MPM cells. In particular, we describe that BOLD-100 increases oxidative stress and deregulates the calcium homeostasis leading to cell stress and, ultimately, to cell death. Our in vitro data strongly suggest that BOLD-100 inhibits the growth of MPM cell lines, proposing the application as a single agent, or in combination with other standard-of-care drugs, to treat MPM. ABSTRACT: Malignant mesothelioma is a rare cancer arising from the serosal surfaces of the body, mainly from the pleural layer. This cancer is strongly related to asbestos exposure and shows a very inauspicious prognosis, because there are scarce therapeutic options for this rare disease. Thus, there is an urgent need to develop novel therapeutic approaches to treat this form of cancer. To explore the biology of malignant pleural mesothelioma (MPM), we previously observed that MPM cell lines show high expression of the GRP78 protein, which is a chaperone protein and the master regulator of the unfolded protein response (UPR) that resides in the endoplasmic reticulum (ER). Based on our previous studies showing the importance of GRP78 in MPM, we observed that BOLD-100, a specific modulator of GRP78 and the UPR, shows cytotoxicity against MPM cells. Our studies demonstrated that BOLD-100 increases ROS production and Ca(2+) release from the ER, leading to ER stress activation and, ultimately, to cell death. Our in vitro data strongly suggest that BOLD-100 inhibits the growth of MPM cell lines, proposing the application as a single agent, or in combination with other standard-of-care drugs, to treat MPM. |
format | Online Article Text |
id | pubmed-9454852 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94548522022-09-09 ER Stress Response and Induction of Apoptosis in Malignant Pleural Mesothelioma: The Achilles Heel Targeted by the Anticancer Ruthenium Drug BOLD-100 Ranzato, Elia Bonsignore, Gregorio Martinotti, Simona Cancers (Basel) Article SIMPLE SUMMARY: Malignant mesothelioma is a rare cancer arising from the serosal surfaces of the body, mainly from the pleural layer. This cancer, strongly linked to asbestos exposure, shows a very inauspicious prognosis. In fact, there is no efficient therapeutic treatment for malignant pleural mesothelioma (MPM). Thus, there is an urgent need to develop novel therapeutic approaches to treat this form of cancer. Our previous study showed the importance of GRP78 in MPM survival. BOLD-100 is a specific modulator of GRP78 and we have observed that it shows cytotoxicity against MPM cells. In particular, we describe that BOLD-100 increases oxidative stress and deregulates the calcium homeostasis leading to cell stress and, ultimately, to cell death. Our in vitro data strongly suggest that BOLD-100 inhibits the growth of MPM cell lines, proposing the application as a single agent, or in combination with other standard-of-care drugs, to treat MPM. ABSTRACT: Malignant mesothelioma is a rare cancer arising from the serosal surfaces of the body, mainly from the pleural layer. This cancer is strongly related to asbestos exposure and shows a very inauspicious prognosis, because there are scarce therapeutic options for this rare disease. Thus, there is an urgent need to develop novel therapeutic approaches to treat this form of cancer. To explore the biology of malignant pleural mesothelioma (MPM), we previously observed that MPM cell lines show high expression of the GRP78 protein, which is a chaperone protein and the master regulator of the unfolded protein response (UPR) that resides in the endoplasmic reticulum (ER). Based on our previous studies showing the importance of GRP78 in MPM, we observed that BOLD-100, a specific modulator of GRP78 and the UPR, shows cytotoxicity against MPM cells. Our studies demonstrated that BOLD-100 increases ROS production and Ca(2+) release from the ER, leading to ER stress activation and, ultimately, to cell death. Our in vitro data strongly suggest that BOLD-100 inhibits the growth of MPM cell lines, proposing the application as a single agent, or in combination with other standard-of-care drugs, to treat MPM. MDPI 2022-08-26 /pmc/articles/PMC9454852/ /pubmed/36077664 http://dx.doi.org/10.3390/cancers14174126 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ranzato, Elia Bonsignore, Gregorio Martinotti, Simona ER Stress Response and Induction of Apoptosis in Malignant Pleural Mesothelioma: The Achilles Heel Targeted by the Anticancer Ruthenium Drug BOLD-100 |
title | ER Stress Response and Induction of Apoptosis in Malignant Pleural Mesothelioma: The Achilles Heel Targeted by the Anticancer Ruthenium Drug BOLD-100 |
title_full | ER Stress Response and Induction of Apoptosis in Malignant Pleural Mesothelioma: The Achilles Heel Targeted by the Anticancer Ruthenium Drug BOLD-100 |
title_fullStr | ER Stress Response and Induction of Apoptosis in Malignant Pleural Mesothelioma: The Achilles Heel Targeted by the Anticancer Ruthenium Drug BOLD-100 |
title_full_unstemmed | ER Stress Response and Induction of Apoptosis in Malignant Pleural Mesothelioma: The Achilles Heel Targeted by the Anticancer Ruthenium Drug BOLD-100 |
title_short | ER Stress Response and Induction of Apoptosis in Malignant Pleural Mesothelioma: The Achilles Heel Targeted by the Anticancer Ruthenium Drug BOLD-100 |
title_sort | er stress response and induction of apoptosis in malignant pleural mesothelioma: the achilles heel targeted by the anticancer ruthenium drug bold-100 |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454852/ https://www.ncbi.nlm.nih.gov/pubmed/36077664 http://dx.doi.org/10.3390/cancers14174126 |
work_keys_str_mv | AT ranzatoelia erstressresponseandinductionofapoptosisinmalignantpleuralmesotheliomatheachillesheeltargetedbytheanticancerrutheniumdrugbold100 AT bonsignoregregorio erstressresponseandinductionofapoptosisinmalignantpleuralmesotheliomatheachillesheeltargetedbytheanticancerrutheniumdrugbold100 AT martinottisimona erstressresponseandinductionofapoptosisinmalignantpleuralmesotheliomatheachillesheeltargetedbytheanticancerrutheniumdrugbold100 |