Cargando…

Identification of EZH2 as Cancer Stem Cell Marker in Clear Cell Renal Cell Carcinoma and the Anti-Tumor Effect of Epigallocatechin-3-Gallate (EGCG)

SIMPLE SUMMARY: Cancer stem cells (CSCs) refer to a group of undifferentiated heterogeneous tumor cells, defined as capable of self-renewal, differentiation, and may be linked to therapeutic resistance and tumor relapse. The development of novel therapeutic strategies to target CSCs and the identifi...

Descripción completa

Detalles Bibliográficos
Autores principales: Lyu, Chen, Wang, Lili, Stadlbauer, Birgit, Noessner, Elfriede, Buchner, Alexander, Pohla, Heike
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454898/
https://www.ncbi.nlm.nih.gov/pubmed/36077742
http://dx.doi.org/10.3390/cancers14174200
Descripción
Sumario:SIMPLE SUMMARY: Cancer stem cells (CSCs) refer to a group of undifferentiated heterogeneous tumor cells, defined as capable of self-renewal, differentiation, and may be linked to therapeutic resistance and tumor relapse. The development of novel therapeutic strategies to target CSCs and the identification of typical CSC markers are essential to improve therapy efficacy and prevent tumor relapse. Our study identifies CSC markers in renal cell carcinoma (RCC) and explores a potential treatment strategy and the underlying pharmacological mechanisms. ABSTRACT: The aim of the study was to develop a new therapeutic strategy to target cancer stem cells (CSCs) in clear cell renal cell carcinoma (ccRCC) and to identify typical CSC markers to improve therapy effectiveness. It was found that the corrected-mRNA expression-based stemness index was upregulated in kidney renal clear cell carcinoma (KIRC) tissues compared to non-tumor tissue and increased with higher tumor stage and grade. EZH2 was identified as a CSC marker and prognosis factor for KIRC patients. The expression of EZH2 was associated with several activated tumor-infiltrating immune cells. High expression of EZH2 was enriched in immune-related pathways, low expression was related to several metabolic pathways. Epigallocatechin-3-gallate (EGCG) was identified as the most potent suppressor of EZH2, was able to inhibit viability, migration, and invasion, and to increase the apoptosis rate of ccRCC CSCs. KIF11, VEGF, and MMP2 were identified as predictive EGCG target genes, suggesting a potential mechanism of how EZH2 might regulate invasiveness and migration. The percentages of FoxP3+ Treg cells in the peripheral blood mononuclear cells of ccRCC patients decreased significantly when cultured with spheres pretreated with EGCG plus sunitinib compared to spheres without treatment. Our findings provide new insights into the treatment options of ccRCC based on targeting CSCs.