Cargando…
High-dimensional normalized data profiles for testing derivative-free optimization algorithms
This article provides a new tool for examining the efficiency and robustness of derivative-free optimization algorithms based on high-dimensional normalized data profiles that test a variety of performance metrics. Unlike the traditional data profiles that examine a single dimension, the proposed da...
Autores principales: | Musafer, Hassan, Tokgoz, Emre, Mahmood, Ausif |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9454945/ https://www.ncbi.nlm.nih.gov/pubmed/36091977 http://dx.doi.org/10.7717/peerj-cs.960 |
Ejemplares similares
-
An algorithm for calculating top-dimensional bounding chains
por: Carvalho, J. Frederico, et al.
Publicado: (2018) -
Design of feature selection algorithm for high-dimensional network data based on supervised discriminant projection
por: Zhang, Zongfu, et al.
Publicado: (2023) -
GenACO a multi-objective cached data offloading optimization based on genetic algorithm and ant colony optimization
por: Indana Zulfa, Mulki, et al.
Publicado: (2021) -
Entropy based C4.5-SHO algorithm with information gain optimization in data mining
por: Reddy, G Sekhar, et al.
Publicado: (2021) -
A particle swarm optimization algorithm based on an improved deb criterion for constrained optimization problems
por: Sun, Ying, et al.
Publicado: (2022)