Cargando…
Effects of sliding window variation in the performance of acceleration-based human activity recognition using deep learning models
Deep learning (DL) models are very useful for human activity recognition (HAR); these methods present better accuracy for HAR when compared to traditional, among other advantages. DL learns from unlabeled data and extracts features from raw data, as for the case of time-series acceleration. Sliding...
Autores principales: | Jaén-Vargas, Milagros, Reyes Leiva, Karla Miriam, Fernandes, Francisco, Barroso Gonçalves, Sérgio, Tavares Silva, Miguel, Lopes, Daniel Simões, Serrano Olmedo, José Javier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455026/ https://www.ncbi.nlm.nih.gov/pubmed/36091986 http://dx.doi.org/10.7717/peerj-cs.1052 |
Ejemplares similares
-
Inertial Measurement Unit Sensors in Assistive Technologies for Visually Impaired People, a Review
por: Reyes Leiva, Karla Miriam, et al.
Publicado: (2021) -
A Proposal of a Motion Measurement System to Support Visually Impaired People in Rehabilitation Using Low-Cost Inertial Sensors
por: Reyes Leiva, Karla Miriam, et al.
Publicado: (2021) -
Comparing general and specialized word embeddings for biomedical named entity recognition
por: Ramos-Vargas, Rigo E., et al.
Publicado: (2021) -
Towards Enhancing Traffic Sign Recognition through Sliding Windows
por: Atif, Muhammad, et al.
Publicado: (2022) -
Facial Expression Recognition Using Local Sliding Window Attention
por: Qiu, Shuang, et al.
Publicado: (2023)