Cargando…
Self-supervised learning methods and applications in medical imaging analysis: a survey
The scarcity of high-quality annotated medical imaging datasets is a major problem that collides with machine learning applications in the field of medical imaging analysis and impedes its advancement. Self-supervised learning is a recent training paradigm that enables learning robust representation...
Autores principales: | Shurrab, Saeed, Duwairi, Rehab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455147/ https://www.ncbi.nlm.nih.gov/pubmed/36091989 http://dx.doi.org/10.7717/peerj-cs.1045 |
Ejemplares similares
-
Integrating chromatin conformation information in a self-supervised learning model improves metagenome binning
por: Ho, Harrison, et al.
Publicado: (2023) -
Supervised deep learning embeddings for the prediction of cervical cancer diagnosis
por: Fernandes, Kelwin, et al.
Publicado: (2018) -
Explainability of deep learning models in medical video analysis: a survey
por: Kolarik, Michal, et al.
Publicado: (2023) -
A review on deep learning applications in highly multiplexed tissue imaging data analysis
por: Zidane, Mohammed, et al.
Publicado: (2023) -
Corrigendum: A review on deep learning applications in highly multiplexed tissue imaging data analysis
por: Zidane, Mohammed, et al.
Publicado: (2023)