Cargando…
Regression‐based Bayesian estimation and structure learning for nonparanormal graphical models
A nonparanormal graphical model is a semiparametric generalization of a Gaussian graphical model for continuous variables in which it is assumed that the variables follow a Gaussian graphical model only after some unknown smooth monotone transformations. We consider a Bayesian approach to inference...
Autores principales: | Mulgrave, Jami J., Ghosal, Subhashis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wiley Subscription Services, Inc., A Wiley Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455150/ https://www.ncbi.nlm.nih.gov/pubmed/36090618 http://dx.doi.org/10.1002/sam.11576 |
Ejemplares similares
-
Testing Differential Gene Networks under Nonparanormal Graphical Models with False Discovery Rate Control
por: Zhang, Qingyang
Publicado: (2020) -
Bayesian graphical models for regression on multiple data sets with different variables
por: Jackson, C. H., et al.
Publicado: (2009) -
Bayesian variable selection with graphical structure learning: Applications in integrative genomics
por: Kundu, Suprateek, et al.
Publicado: (2018) -
Bayesian Covariate-Dependent Gaussian Graphical Models with Varying Structure
por: Ni, Yang, et al.
Publicado: (2022) -
Bayesian graphical models for computational network biology
por: Ni, Yang, et al.
Publicado: (2018)