Cargando…
3D deep convolutional neural network segmentation model for precipitate and porosity identification in synchrotron X-ray tomograms
New developments at synchrotron beamlines and the ongoing upgrades of synchrotron facilities allow the possibility to study complex structures with a much better spatial and temporal resolution than ever before. However, the downside is that the data collected are also significantly larger (more tha...
Autores principales: | Gaudez, S., Ben Haj Slama, M., Kaestner, A., Upadhyay, M. V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455210/ https://www.ncbi.nlm.nih.gov/pubmed/36073882 http://dx.doi.org/10.1107/S1600577522006816 |
Ejemplares similares
-
A convolutional neural network for fast upsampling of undersampled tomograms in X-ray CT time-series using a representative highly sampled tomogram
por: Bellos, Dimitrios, et al.
Publicado: (2019) -
Non-oxide precipitates in additively manufactured austenitic stainless steel
por: Upadhyay, Manas Vijay, et al.
Publicado: (2021) -
Convolutional Neural Networks for Automated Annotation of Cellular Cryo-Electron Tomograms
por: Chen, Muyuan, et al.
Publicado: (2017) -
An intensity-based post-processing tool for 3D instance segmentation of organelles in soft X-ray tomograms
por: Li, Angdi, et al.
Publicado: (2022) -
3D surface reconstruction of cellular cryo-soft X-ray microscopy tomograms using semisupervised deep learning
por: Dyhr, Michael C. A., et al.
Publicado: (2023)