Cargando…

Physicochemical and Functional Properties of Texturized Vegetable Proteins and Cooked Patty Textures: Comprehensive Characterization and Correlation Analysis

Rising concerns of environment and health from animal-based proteins have driven a massive demand for plant proteins. Textured vegetable protein (TVP) is a plant-protein-based product with fibrous textures serving as a promising meat analog. This study aimed to establish possible correlations betwee...

Descripción completa

Detalles Bibliográficos
Autores principales: Hong, Shan, Shen, Yanting, Li, Yonghui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455741/
https://www.ncbi.nlm.nih.gov/pubmed/36076805
http://dx.doi.org/10.3390/foods11172619
Descripción
Sumario:Rising concerns of environment and health from animal-based proteins have driven a massive demand for plant proteins. Textured vegetable protein (TVP) is a plant-protein-based product with fibrous textures serving as a promising meat analog. This study aimed to establish possible correlations between the properties of raw TVPs and the corresponding meatless patties. Twenty-eight commercial TVPs based on different protein types and from different manufacturers were compared in proximate compositions, physicochemical and functional properties, as well as cooking and textural attributes in meatless patties. Significant differences were observed in the compositions and properties of the raw TVPs (p < 0.05) and were well reflected in the final patties. Of all the TVP attributes, rehydration capacity (RHC) was the most dominant factor affecting cooking loss (r = 0.679) and textures of hardness (r = −0.791), shear force (r = −0.621) and compressed juiciness (r = 0.812) in meatless patties, as evidenced by the significant correlations (p < 0.01). The current study may advance the knowledge for TVP-based meat development.