Cargando…
Molecular Subtyping and Outlier Detection in Human Disease Using the Paraclique Algorithm
Recent discoveries of distinct molecular subtypes have led to remarkable advances in treatment for a variety of diseases. While subtyping via unsupervised clustering has received a great deal of interest, most methods rely on basic statistical or machine learning methods. At the same time, technique...
Autores principales: | Hagan, Ronald D., Langston, Michael A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455766/ https://www.ncbi.nlm.nih.gov/pubmed/36092474 http://dx.doi.org/10.3390/a14020063 |
Ejemplares similares
-
Fast Outlier Detection Using a Grid-Based Algorithm
por: Lee, Jihwan, et al.
Publicado: (2016) -
LeafCutterMD: an algorithm for outlier splicing detection in rare diseases
por: Jenkinson, Garrett, et al.
Publicado: (2020) -
An Efficient Algorithm for the Detection of Outliers in Mislabeled Omics Data
por: Sun, Hongwei, et al.
Publicado: (2021) -
Portraying the Expression Landscapes of B-Cell Lymphoma-Intuitive Detection of Outlier Samples and of Molecular Subtypes
por: Hopp, Lydia, et al.
Publicado: (2013) -
Detecting Outlier Microarray Arrays by Correlation and Percentage of Outliers Spots
por: Yang, Song, et al.
Publicado: (2007)