Cargando…
Isolation, Purification and Structure Identification of a Calcium-Binding Peptide from Sheep Bone Protein Hydrolysate
To isolate a novel peptide with calcium-binding capacity, sheep bone protein was hydrolyzed sequentially using a dual-enzyme system (alcalase treatment following neutrase treatment) and investigated for its characteristics, separation, purification, and structure. The sheep bone protein hydrolysate...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455869/ https://www.ncbi.nlm.nih.gov/pubmed/36076840 http://dx.doi.org/10.3390/foods11172655 |
_version_ | 1784785674245767168 |
---|---|
author | Hu, Guanhua Wang, Debao Sun, Lina Su, Rina Corazzin, Mirco Sun, Xueying Dou, Lu Zhang, Min Zhao, Lihua Su, Lin Jin, Ye |
author_facet | Hu, Guanhua Wang, Debao Sun, Lina Su, Rina Corazzin, Mirco Sun, Xueying Dou, Lu Zhang, Min Zhao, Lihua Su, Lin Jin, Ye |
author_sort | Hu, Guanhua |
collection | PubMed |
description | To isolate a novel peptide with calcium-binding capacity, sheep bone protein was hydrolyzed sequentially using a dual-enzyme system (alcalase treatment following neutrase treatment) and investigated for its characteristics, separation, purification, and structure. The sheep bone protein hydrolysate (SBPH) was enriched in key amino acids such as Gly, Arg, Pro, Leu, Lys, Glu, Val, and Asp. The fluorescence spectra, circular dichroism spectra, and Fourier-transform infrared spectroscopy results showed that adding calcium ions decreased the α-helix and β-sheet content but significantly increased the random and β-turn content (p < 0.05). Carboxyl oxygen and amino nitrogen atoms of SBPH may participate in peptide–calcium binding. Scanning electron microscopy and energy dispersive spectrometry results showed that SBPH had strong calcium-chelating ability and that the peptide–calcium complex (SBPH–Ca) combined with calcium to form a spherical cluster structure. SBPH was separated and purified gradually by ultrafiltration, gel filtration chromatography, and reversed-phase high-performance liquid chromatography. Liquid chromatography-electrospray ionization/mass spectrometry identified the amino acid sequences as GPSGLPGERG (925.46 Da) and GAPGKDGVRG (912.48 Da), with calcium-binding capacities of 89.76 ± 0.19% and 88.26 ± 0.25%, respectively. The results of this study provide a scientific basis for the preparation of a new type of calcium supplement and high-value utilization of sheep bone. |
format | Online Article Text |
id | pubmed-9455869 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94558692022-09-09 Isolation, Purification and Structure Identification of a Calcium-Binding Peptide from Sheep Bone Protein Hydrolysate Hu, Guanhua Wang, Debao Sun, Lina Su, Rina Corazzin, Mirco Sun, Xueying Dou, Lu Zhang, Min Zhao, Lihua Su, Lin Jin, Ye Foods Article To isolate a novel peptide with calcium-binding capacity, sheep bone protein was hydrolyzed sequentially using a dual-enzyme system (alcalase treatment following neutrase treatment) and investigated for its characteristics, separation, purification, and structure. The sheep bone protein hydrolysate (SBPH) was enriched in key amino acids such as Gly, Arg, Pro, Leu, Lys, Glu, Val, and Asp. The fluorescence spectra, circular dichroism spectra, and Fourier-transform infrared spectroscopy results showed that adding calcium ions decreased the α-helix and β-sheet content but significantly increased the random and β-turn content (p < 0.05). Carboxyl oxygen and amino nitrogen atoms of SBPH may participate in peptide–calcium binding. Scanning electron microscopy and energy dispersive spectrometry results showed that SBPH had strong calcium-chelating ability and that the peptide–calcium complex (SBPH–Ca) combined with calcium to form a spherical cluster structure. SBPH was separated and purified gradually by ultrafiltration, gel filtration chromatography, and reversed-phase high-performance liquid chromatography. Liquid chromatography-electrospray ionization/mass spectrometry identified the amino acid sequences as GPSGLPGERG (925.46 Da) and GAPGKDGVRG (912.48 Da), with calcium-binding capacities of 89.76 ± 0.19% and 88.26 ± 0.25%, respectively. The results of this study provide a scientific basis for the preparation of a new type of calcium supplement and high-value utilization of sheep bone. MDPI 2022-09-01 /pmc/articles/PMC9455869/ /pubmed/36076840 http://dx.doi.org/10.3390/foods11172655 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Hu, Guanhua Wang, Debao Sun, Lina Su, Rina Corazzin, Mirco Sun, Xueying Dou, Lu Zhang, Min Zhao, Lihua Su, Lin Jin, Ye Isolation, Purification and Structure Identification of a Calcium-Binding Peptide from Sheep Bone Protein Hydrolysate |
title | Isolation, Purification and Structure Identification of a Calcium-Binding Peptide from Sheep Bone Protein Hydrolysate |
title_full | Isolation, Purification and Structure Identification of a Calcium-Binding Peptide from Sheep Bone Protein Hydrolysate |
title_fullStr | Isolation, Purification and Structure Identification of a Calcium-Binding Peptide from Sheep Bone Protein Hydrolysate |
title_full_unstemmed | Isolation, Purification and Structure Identification of a Calcium-Binding Peptide from Sheep Bone Protein Hydrolysate |
title_short | Isolation, Purification and Structure Identification of a Calcium-Binding Peptide from Sheep Bone Protein Hydrolysate |
title_sort | isolation, purification and structure identification of a calcium-binding peptide from sheep bone protein hydrolysate |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455869/ https://www.ncbi.nlm.nih.gov/pubmed/36076840 http://dx.doi.org/10.3390/foods11172655 |
work_keys_str_mv | AT huguanhua isolationpurificationandstructureidentificationofacalciumbindingpeptidefromsheepboneproteinhydrolysate AT wangdebao isolationpurificationandstructureidentificationofacalciumbindingpeptidefromsheepboneproteinhydrolysate AT sunlina isolationpurificationandstructureidentificationofacalciumbindingpeptidefromsheepboneproteinhydrolysate AT surina isolationpurificationandstructureidentificationofacalciumbindingpeptidefromsheepboneproteinhydrolysate AT corazzinmirco isolationpurificationandstructureidentificationofacalciumbindingpeptidefromsheepboneproteinhydrolysate AT sunxueying isolationpurificationandstructureidentificationofacalciumbindingpeptidefromsheepboneproteinhydrolysate AT doulu isolationpurificationandstructureidentificationofacalciumbindingpeptidefromsheepboneproteinhydrolysate AT zhangmin isolationpurificationandstructureidentificationofacalciumbindingpeptidefromsheepboneproteinhydrolysate AT zhaolihua isolationpurificationandstructureidentificationofacalciumbindingpeptidefromsheepboneproteinhydrolysate AT sulin isolationpurificationandstructureidentificationofacalciumbindingpeptidefromsheepboneproteinhydrolysate AT jinye isolationpurificationandstructureidentificationofacalciumbindingpeptidefromsheepboneproteinhydrolysate |