Cargando…
Human Motion Enhancement via Tobit Kalman Filter-Assisted Autoencoder
We present a novel approach to enhance the quality of human motion data collected by low-cost depth sensors, namely D-Mocap, which suffers from low accuracy and poor stability due to occlusion, interference, and algorithmic limitations. Our approach takes advantage of a large set of high-quality and...
Autores principales: | LANNAN, NATE, ZHOU, LE, FAN, GUOLIANG |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9455937/ https://www.ncbi.nlm.nih.gov/pubmed/36090467 http://dx.doi.org/10.1109/access.2022.3157605 |
Ejemplares similares
-
The Tobit-Unscented-Kalman-Filter-Based Attitude Estimation Algorithm Using the Star Sensor and Inertial Gyro Combination
por: Wang, Xinmei, et al.
Publicado: (2023) -
Structure from Motion using the Extended Kalman Filter
por: Civera, Javier, et al.
Publicado: (2012) -
Motion artifact cancellation in NIR spectroscopy using discrete Kalman filtering
por: Izzetoglu, Meltem, et al.
Publicado: (2010) -
Unscented Kalman Filtering for Single Camera Based Motion and Shape Estimation
por: Jwo, Dah-Jing, et al.
Publicado: (2011) -
The Joint Adaptive Kalman Filter (JAKF) for Vehicle Motion State Estimation
por: Gao, Siwei, et al.
Publicado: (2016)