Cargando…

Treating iPSC-Derived β Cells with an Anti-CD30 Antibody–Drug Conjugate Eliminates the Risk of Teratoma Development upon Transplantation

Insulin-producing cells derived from induced pluripotent stem cells (iPSCs) are promising candidates for β cell replacement in type 1 diabetes. However, the risk of teratoma formation due to residual undifferentiated iPSCs contaminating the differentiated cells is still a critical concern for clinic...

Descripción completa

Detalles Bibliográficos
Autores principales: Pellegrini, Silvia, Zamarian, Valentina, Landi, Elisa, Cospito, Alessandro, Lombardo, Marta Tiffany, Manenti, Fabio, Citro, Antonio, Schiavo Lena, Marco, Piemonti, Lorenzo, Sordi, Valeria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456216/
https://www.ncbi.nlm.nih.gov/pubmed/36077097
http://dx.doi.org/10.3390/ijms23179699
Descripción
Sumario:Insulin-producing cells derived from induced pluripotent stem cells (iPSCs) are promising candidates for β cell replacement in type 1 diabetes. However, the risk of teratoma formation due to residual undifferentiated iPSCs contaminating the differentiated cells is still a critical concern for clinical application. Here, we hypothesized that pretreatment of iPSC-derived insulin-producing cells with an anti-CD30 antibody–drug conjugate could prevent in vivo teratoma formation by selectively killing residual undifferentiated cells. CD30 is expressed in all human iPSCs clones tested by flow cytometry (n = 7) but not in iPSC-derived β cells (iβs). Concordantly, anti-CD30 treatment in vitro for 24 h induced a dose-dependent cell death (up to 90%) in human iPSCs while it did not kill iβs nor had an impact on iβ identity and function, including capacity to secrete insulin in response to stimuli. In a model of teratoma assay associated with iβ transplantation, the pretreatment of cells with anti-CD30 for 24 h before the implantation into NOD-SCID mice completely eliminated teratoma development (0/10 vs. 8/8, p < 0.01). These findings suggest that short-term in vitro treatment with clinical-grade anti-CD30, targeting residual undifferentiated cells, eliminates the tumorigenicity of iPSC-derived β cells, potentially providing enhanced safety for iPSC-based β cell replacement therapy in clinical scenarios.