Cargando…
NEXGB: A Network Embedding Framework for Anticancer Drug Combination Prediction
Compared to single-drug therapy, drug combinations have shown great potential in cancer treatment. Most of the current methods employ genomic data and chemical information to construct drug–cancer cell line features, but there is still a need to explore methods to combine topological information in...
Autores principales: | Meng, Fanjie, Li, Feng, Liu, Jin-Xing, Shang, Junliang, Liu, Xikui, Li, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456392/ https://www.ncbi.nlm.nih.gov/pubmed/36077236 http://dx.doi.org/10.3390/ijms23179838 |
Ejemplares similares
-
Network embedding framework for driver gene discovery by combining functional and structural information
por: Chu, Xin, et al.
Publicado: (2023) -
NESM: a network embedding method for tumor stratification by integrating multi-omics data
por: Li, Feng, et al.
Publicado: (2022) -
PRODeepSyn: predicting anticancer synergistic drug combinations by embedding cell lines with protein–protein interaction network
por: Wang, Xiaowen, et al.
Publicado: (2022) -
Predicting combinations of drugs by exploiting graph embedding of heterogeneous networks
por: Song, Fei, et al.
Publicado: (2022) -
ETGPDA: identification of piRNA-disease associations based on embedding transformation graph convolutional network
por: Meng, Xianghan, et al.
Publicado: (2023)