Cargando…

Blood Levels of Endocannabinoids, Oxylipins, and Metabolites Are Altered in Hemodialysis Patients

Hemodialysis patients (HDPs) have higher blood pressure, higher levels of inflammation, a higher risk of cardiovascular disease, and unusually low plasma n-3 polyunsaturated fatty acid (PUFA) levels compared to healthy subjects. The objective of our investigation was to examine the levels of endocan...

Descripción completa

Detalles Bibliográficos
Autores principales: Watkins, Bruce A., Friedman, Allon N., Kim, Jeffrey, Borkowski, Kamil, Kaiser, Shaun, Fiehn, Oliver, Newman, John W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456435/
https://www.ncbi.nlm.nih.gov/pubmed/36077177
http://dx.doi.org/10.3390/ijms23179781
Descripción
Sumario:Hemodialysis patients (HDPs) have higher blood pressure, higher levels of inflammation, a higher risk of cardiovascular disease, and unusually low plasma n-3 polyunsaturated fatty acid (PUFA) levels compared to healthy subjects. The objective of our investigation was to examine the levels of endocannabinoids (eCBs) and oxylipins (OxLs) in female HDPs compared to healthy matched female controls, with the underlying hypothesis that differences in specific PUFA levels in hemodialysis patients would result in changes in eCBs and OxLs. Plasma phospholipid fatty acids were analyzed by gas chromatography. Plasma was extracted and analyzed using ultra-performance liquid chromatography followed by electrospray ionization and tandem MS for eCBs and OxLs. The global untargeted metabolite profiling of plasma was performed by GCTOF MS. Compared to the controls, HDPs showed lower levels of plasma EPA and the associated OxL metabolites 5- and 12-HEPE, 14,15-DiHETE, as well as DHA derived 19(20)-EpDPE. Meanwhile, no changes in arachidonylethanolamide or 2-arachidonylglycerol in the open circulation were detected. Higher levels of multiple N-acylethanolamides, monoacylglycerols, biomarkers of progressive kidney disease, the nitric oxide metabolism-linked citrulline, and the uremic toxins kynurenine and creatine were observed in HDP. These metabolic differences in cCBs and OxLs help explain the severe inflammatory and cardiovascular disease manifested by HDPs, and they should be explored in future studies.