Cargando…
A New Deep Learning Algorithm with Activation Mapping for Diabetic Retinopathy: Backtesting after 10 Years of Tele-Ophthalmology
We report the development of a deep learning algorithm (AI) to detect signs of diabetic retinopathy (DR) from fundus images. For this, we use a ResNet-50 neural network with a double resolution, the addition of Squeeze–Excitation blocks, pre-trained in ImageNet, and trained for 50 epochs using the A...
Autores principales: | Pareja-Ríos, Alicia, Ceruso, Sabato, Romero-Aroca, Pedro, Bonaque-González, Sergio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456446/ https://www.ncbi.nlm.nih.gov/pubmed/36078875 http://dx.doi.org/10.3390/jcm11174945 |
Ejemplares similares
-
The role of tele-ophthalmology in diabetic retinopathy screening
por: Kalogeropoulos, Dimitrios, et al.
Publicado: (2020) -
Deep learning in the stock market—a systematic survey of practice, backtesting, and applications
por: Olorunnimbe, Kenniy, et al.
Publicado: (2022) -
Tele-ophthalmology
por: Rishi, Pukhraj
Publicado: (2009) -
Finding #1 stocks: screening, backtesting, and time-proven strategies
por: Matras, Kevin
Publicado: (2011) -
Tele-ophthalmology: Need of the hour
por: Sharma, Mohita, et al.
Publicado: (2020)