Cargando…
Exogenously Applied Sodium Nitroprusside Mitigates Lead Toxicity in Rice by Regulating Antioxidants and Metal Stress-Related Transcripts
Sustainable agriculture is increasingly being put in danger by environmental contamination with dangerous heavy metals (HMs), especially lead (Pb). Plants have developed a sophisticated mechanism for nitric oxide (NO) production and signaling to regulate hazardous effects of abiotic factors, includi...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456452/ https://www.ncbi.nlm.nih.gov/pubmed/36077126 http://dx.doi.org/10.3390/ijms23179729 |
_version_ | 1784785818985955328 |
---|---|
author | Rahim, Waqas Khan, Murtaza Al Azzawi, Tiba Nazar Ibrahim Pande, Anjali Methela, Nusrat Jahan Ali, Sajid Imran, Muhammad Lee, Da-Sol Lee, Geun-Mo Mun, Bong-Gyu Moon, Yong-Sun Lee, In-Jung Yun, Byung-Wook |
author_facet | Rahim, Waqas Khan, Murtaza Al Azzawi, Tiba Nazar Ibrahim Pande, Anjali Methela, Nusrat Jahan Ali, Sajid Imran, Muhammad Lee, Da-Sol Lee, Geun-Mo Mun, Bong-Gyu Moon, Yong-Sun Lee, In-Jung Yun, Byung-Wook |
author_sort | Rahim, Waqas |
collection | PubMed |
description | Sustainable agriculture is increasingly being put in danger by environmental contamination with dangerous heavy metals (HMs), especially lead (Pb). Plants have developed a sophisticated mechanism for nitric oxide (NO) production and signaling to regulate hazardous effects of abiotic factors, including HMs. In the current study, we investigated the role of exogenously applied sodium nitroprusside (SNP, a nitric oxide (NO) donor) in ameliorating the toxic effects of lead (Pb) on rice. For this purpose, plants were subjected to 1.2 mM Pb alone and in combination with 100 µM SNP. We found that under 1.2 mM Pb stress conditions, the accumulation of oxidative stress markers, including hydrogen peroxide (H(2)O(2)) (37%), superoxide anion (O(2)(−)) (28%), malondialdehyde (MDA) (33%), and electrolyte leakage (EL) (34%), was significantly reduced via the application of 100 µM SNP. On the other hand, under the said stress of Pb, the activity of the reactive oxygen species (ROS) scavengers such as polyphenol oxidase (PPO) (60%), peroxidase (POD) (28%), catalase (CAT) (26%), superoxide dismutase (SOD) (42%), and ascorbate peroxidase (APX) (58%) was significantly increased via the application of 100 µM SNP. In addition, the application of 100 µM SNP rescued agronomic traits such as plant height (24%), number of tillers per plant (40%), and visible green pigments (44%) when the plants were exposed to 1.2 mM Pb stress. Furthermore, after exposure to 1.2 mM Pb stress, the expression of the heavy-metal stress-related genes OsPCS1 (44%), OsPCS2 (74%), OsMTP1 (83%), OsMTP5 (53%), OsMT-I-1a (31%), and OsMT-I-1b (24%) was significantly enhanced via the application of 100 µM SNP. Overall, our research evaluates that exogenously applied 100 mM SNP protects rice plants from the oxidative damage brought on by 1.2 mM Pb stress by lowering oxidative stress markers, enhancing the antioxidant system and the transcript accumulation of HMs stress-related genes. |
format | Online Article Text |
id | pubmed-9456452 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94564522022-09-09 Exogenously Applied Sodium Nitroprusside Mitigates Lead Toxicity in Rice by Regulating Antioxidants and Metal Stress-Related Transcripts Rahim, Waqas Khan, Murtaza Al Azzawi, Tiba Nazar Ibrahim Pande, Anjali Methela, Nusrat Jahan Ali, Sajid Imran, Muhammad Lee, Da-Sol Lee, Geun-Mo Mun, Bong-Gyu Moon, Yong-Sun Lee, In-Jung Yun, Byung-Wook Int J Mol Sci Article Sustainable agriculture is increasingly being put in danger by environmental contamination with dangerous heavy metals (HMs), especially lead (Pb). Plants have developed a sophisticated mechanism for nitric oxide (NO) production and signaling to regulate hazardous effects of abiotic factors, including HMs. In the current study, we investigated the role of exogenously applied sodium nitroprusside (SNP, a nitric oxide (NO) donor) in ameliorating the toxic effects of lead (Pb) on rice. For this purpose, plants were subjected to 1.2 mM Pb alone and in combination with 100 µM SNP. We found that under 1.2 mM Pb stress conditions, the accumulation of oxidative stress markers, including hydrogen peroxide (H(2)O(2)) (37%), superoxide anion (O(2)(−)) (28%), malondialdehyde (MDA) (33%), and electrolyte leakage (EL) (34%), was significantly reduced via the application of 100 µM SNP. On the other hand, under the said stress of Pb, the activity of the reactive oxygen species (ROS) scavengers such as polyphenol oxidase (PPO) (60%), peroxidase (POD) (28%), catalase (CAT) (26%), superoxide dismutase (SOD) (42%), and ascorbate peroxidase (APX) (58%) was significantly increased via the application of 100 µM SNP. In addition, the application of 100 µM SNP rescued agronomic traits such as plant height (24%), number of tillers per plant (40%), and visible green pigments (44%) when the plants were exposed to 1.2 mM Pb stress. Furthermore, after exposure to 1.2 mM Pb stress, the expression of the heavy-metal stress-related genes OsPCS1 (44%), OsPCS2 (74%), OsMTP1 (83%), OsMTP5 (53%), OsMT-I-1a (31%), and OsMT-I-1b (24%) was significantly enhanced via the application of 100 µM SNP. Overall, our research evaluates that exogenously applied 100 mM SNP protects rice plants from the oxidative damage brought on by 1.2 mM Pb stress by lowering oxidative stress markers, enhancing the antioxidant system and the transcript accumulation of HMs stress-related genes. MDPI 2022-08-27 /pmc/articles/PMC9456452/ /pubmed/36077126 http://dx.doi.org/10.3390/ijms23179729 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Rahim, Waqas Khan, Murtaza Al Azzawi, Tiba Nazar Ibrahim Pande, Anjali Methela, Nusrat Jahan Ali, Sajid Imran, Muhammad Lee, Da-Sol Lee, Geun-Mo Mun, Bong-Gyu Moon, Yong-Sun Lee, In-Jung Yun, Byung-Wook Exogenously Applied Sodium Nitroprusside Mitigates Lead Toxicity in Rice by Regulating Antioxidants and Metal Stress-Related Transcripts |
title | Exogenously Applied Sodium Nitroprusside Mitigates Lead Toxicity in Rice by Regulating Antioxidants and Metal Stress-Related Transcripts |
title_full | Exogenously Applied Sodium Nitroprusside Mitigates Lead Toxicity in Rice by Regulating Antioxidants and Metal Stress-Related Transcripts |
title_fullStr | Exogenously Applied Sodium Nitroprusside Mitigates Lead Toxicity in Rice by Regulating Antioxidants and Metal Stress-Related Transcripts |
title_full_unstemmed | Exogenously Applied Sodium Nitroprusside Mitigates Lead Toxicity in Rice by Regulating Antioxidants and Metal Stress-Related Transcripts |
title_short | Exogenously Applied Sodium Nitroprusside Mitigates Lead Toxicity in Rice by Regulating Antioxidants and Metal Stress-Related Transcripts |
title_sort | exogenously applied sodium nitroprusside mitigates lead toxicity in rice by regulating antioxidants and metal stress-related transcripts |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456452/ https://www.ncbi.nlm.nih.gov/pubmed/36077126 http://dx.doi.org/10.3390/ijms23179729 |
work_keys_str_mv | AT rahimwaqas exogenouslyappliedsodiumnitroprussidemitigatesleadtoxicityinricebyregulatingantioxidantsandmetalstressrelatedtranscripts AT khanmurtaza exogenouslyappliedsodiumnitroprussidemitigatesleadtoxicityinricebyregulatingantioxidantsandmetalstressrelatedtranscripts AT alazzawitibanazaribrahim exogenouslyappliedsodiumnitroprussidemitigatesleadtoxicityinricebyregulatingantioxidantsandmetalstressrelatedtranscripts AT pandeanjali exogenouslyappliedsodiumnitroprussidemitigatesleadtoxicityinricebyregulatingantioxidantsandmetalstressrelatedtranscripts AT methelanusratjahan exogenouslyappliedsodiumnitroprussidemitigatesleadtoxicityinricebyregulatingantioxidantsandmetalstressrelatedtranscripts AT alisajid exogenouslyappliedsodiumnitroprussidemitigatesleadtoxicityinricebyregulatingantioxidantsandmetalstressrelatedtranscripts AT imranmuhammad exogenouslyappliedsodiumnitroprussidemitigatesleadtoxicityinricebyregulatingantioxidantsandmetalstressrelatedtranscripts AT leedasol exogenouslyappliedsodiumnitroprussidemitigatesleadtoxicityinricebyregulatingantioxidantsandmetalstressrelatedtranscripts AT leegeunmo exogenouslyappliedsodiumnitroprussidemitigatesleadtoxicityinricebyregulatingantioxidantsandmetalstressrelatedtranscripts AT munbonggyu exogenouslyappliedsodiumnitroprussidemitigatesleadtoxicityinricebyregulatingantioxidantsandmetalstressrelatedtranscripts AT moonyongsun exogenouslyappliedsodiumnitroprussidemitigatesleadtoxicityinricebyregulatingantioxidantsandmetalstressrelatedtranscripts AT leeinjung exogenouslyappliedsodiumnitroprussidemitigatesleadtoxicityinricebyregulatingantioxidantsandmetalstressrelatedtranscripts AT yunbyungwook exogenouslyappliedsodiumnitroprussidemitigatesleadtoxicityinricebyregulatingantioxidantsandmetalstressrelatedtranscripts |