Cargando…
A Robustness Evaluation of Machine Learning Algorithms for ECG Myocardial Infarction Detection
An automatic electrocardiogram (ECG) myocardial infarction detection system needs to satisfy several requirements to be efficient in real-world practice. These requirements, such as reliability, less complexity, and high performance in decision-making, remain very important in a realistic clinical e...
Autores principales: | Sraitih, Mohamed, Jabrane, Younes, Hajjam El Hassani, Amir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456488/ https://www.ncbi.nlm.nih.gov/pubmed/36078865 http://dx.doi.org/10.3390/jcm11174935 |
Ejemplares similares
-
An Automated System for ECG Arrhythmia Detection Using Machine Learning Techniques
por: Sraitih, Mohamed, et al.
Publicado: (2021) -
Medical Image Segmentation Using Automatic Optimized U-Net Architecture Based on Genetic Algorithm
por: Khouy, Mohammed, et al.
Publicado: (2023) -
Robust algorithm for arrhythmia classification in ECG using extreme learning machine
por: Kim, Jinkwon, et al.
Publicado: (2009) -
Machine learning for ECG diagnosis and risk stratification of occlusion myocardial infarction
por: Al-Zaiti, Salah S., et al.
Publicado: (2023) -
ECG-based machine-learning algorithms for heartbeat classification
por: Aziz, Saira, et al.
Publicado: (2021)