Cargando…
A Universal Method for Modeling and Characterizing Non-Circular Packing Systems Based on n-Point Correlation Functions
A universal method for modeling and characterizing non-circular particles is developed. The n-point correlation functions (n = 1, 2 and 3) are efficiently computed with a GPU parallel computing procedure. An algorithm for dynamic packing of impenetrable non-circular particles is developed based on t...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456632/ https://www.ncbi.nlm.nih.gov/pubmed/36079382 http://dx.doi.org/10.3390/ma15175991 |
Sumario: | A universal method for modeling and characterizing non-circular particles is developed. The n-point correlation functions (n = 1, 2 and 3) are efficiently computed with a GPU parallel computing procedure. An algorithm for dynamic packing of impenetrable non-circular particles is developed based on the fast estimation of overlap information using a one-point correlation function. The packing algorithm is independent of particle shape and proved to be reliable by examples of polygons and super-ellipses. In addition, penetrable packings are generated in an efficient and precise way. Using a two-point correlation function, these non-circular packs are accurately characterized and compared in terms of features such as penetrable and impenetrable, packing fraction and particle shape. In addition, three-point correlation functions are also illustrated and discussed. |
---|