Cargando…

Disruption of mitochondria–sarcoplasmic reticulum microdomain connectomics contributes to sinus node dysfunction in heart failure

The sinoatrial node (SAN), the leading pacemaker region, generates electrical impulses that propagate throughout the heart. SAN dysfunction with bradyarrhythmia is well documented in heart failure (HF). However, the underlying mechanisms are not completely understood. Mitochondria are critical to ce...

Descripción completa

Detalles Bibliográficos
Autores principales: Ren, Lu, Gopireddy, Raghavender R., Perkins, Guy, Zhang, Hao, Timofeyev, Valeriy, Lyu, Yankun, Diloretto, Daphne A., Trinh, Pauline, Sirish, Padmini, Overton, James L., Xu, Wilson, Grainger, Nathan, Xiang, Yang K., Dedkova, Elena N., Zhang, Xiao-Dong, Yamoah, Ebenezer N., Navedo, Manuel F., Thai, Phung N., Chiamvimonvat, Nipavan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456763/
https://www.ncbi.nlm.nih.gov/pubmed/36044551
http://dx.doi.org/10.1073/pnas.2206708119
_version_ 1784785899363500032
author Ren, Lu
Gopireddy, Raghavender R.
Perkins, Guy
Zhang, Hao
Timofeyev, Valeriy
Lyu, Yankun
Diloretto, Daphne A.
Trinh, Pauline
Sirish, Padmini
Overton, James L.
Xu, Wilson
Grainger, Nathan
Xiang, Yang K.
Dedkova, Elena N.
Zhang, Xiao-Dong
Yamoah, Ebenezer N.
Navedo, Manuel F.
Thai, Phung N.
Chiamvimonvat, Nipavan
author_facet Ren, Lu
Gopireddy, Raghavender R.
Perkins, Guy
Zhang, Hao
Timofeyev, Valeriy
Lyu, Yankun
Diloretto, Daphne A.
Trinh, Pauline
Sirish, Padmini
Overton, James L.
Xu, Wilson
Grainger, Nathan
Xiang, Yang K.
Dedkova, Elena N.
Zhang, Xiao-Dong
Yamoah, Ebenezer N.
Navedo, Manuel F.
Thai, Phung N.
Chiamvimonvat, Nipavan
author_sort Ren, Lu
collection PubMed
description The sinoatrial node (SAN), the leading pacemaker region, generates electrical impulses that propagate throughout the heart. SAN dysfunction with bradyarrhythmia is well documented in heart failure (HF). However, the underlying mechanisms are not completely understood. Mitochondria are critical to cellular processes that determine the life or death of the cell. The release of Ca(2+) from the ryanodine receptors 2 (RyR2) on the sarcoplasmic reticulum (SR) at mitochondria–SR microdomains serves as the critical communication to match energy production to meet metabolic demands. Therefore, we tested the hypothesis that alterations in the mitochondria–SR connectomics contribute to SAN dysfunction in HF. We took advantage of a mouse model of chronic pressure overload–induced HF by transverse aortic constriction (TAC) and a SAN-specific CRISPR-Cas9–mediated knockdown of mitofusin-2 (Mfn2), the mitochondria–SR tethering GTPase protein. TAC mice exhibited impaired cardiac function with HF, cardiac fibrosis, and profound SAN dysfunction. Ultrastructural imaging using electron microscope (EM) tomography revealed abnormal mitochondrial structure with increased mitochondria–SR distance. The expression of Mfn2 was significantly down-regulated and showed reduced colocalization with RyR2 in HF SAN cells. Indeed, SAN-specific Mfn2 knockdown led to alterations in the mitochondria–SR microdomains and SAN dysfunction. Finally, disruptions in the mitochondria–SR microdomains resulted in abnormal mitochondrial Ca(2+) handling, alterations in localized protein kinase A (PKA) activity, and impaired mitochondrial function in HF SAN cells. The current study provides insights into the role of mitochondria–SR microdomains in SAN automaticity and possible therapeutic targets for SAN dysfunction in HF patients.
format Online
Article
Text
id pubmed-9456763
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-94567632022-09-09 Disruption of mitochondria–sarcoplasmic reticulum microdomain connectomics contributes to sinus node dysfunction in heart failure Ren, Lu Gopireddy, Raghavender R. Perkins, Guy Zhang, Hao Timofeyev, Valeriy Lyu, Yankun Diloretto, Daphne A. Trinh, Pauline Sirish, Padmini Overton, James L. Xu, Wilson Grainger, Nathan Xiang, Yang K. Dedkova, Elena N. Zhang, Xiao-Dong Yamoah, Ebenezer N. Navedo, Manuel F. Thai, Phung N. Chiamvimonvat, Nipavan Proc Natl Acad Sci U S A Biological Sciences The sinoatrial node (SAN), the leading pacemaker region, generates electrical impulses that propagate throughout the heart. SAN dysfunction with bradyarrhythmia is well documented in heart failure (HF). However, the underlying mechanisms are not completely understood. Mitochondria are critical to cellular processes that determine the life or death of the cell. The release of Ca(2+) from the ryanodine receptors 2 (RyR2) on the sarcoplasmic reticulum (SR) at mitochondria–SR microdomains serves as the critical communication to match energy production to meet metabolic demands. Therefore, we tested the hypothesis that alterations in the mitochondria–SR connectomics contribute to SAN dysfunction in HF. We took advantage of a mouse model of chronic pressure overload–induced HF by transverse aortic constriction (TAC) and a SAN-specific CRISPR-Cas9–mediated knockdown of mitofusin-2 (Mfn2), the mitochondria–SR tethering GTPase protein. TAC mice exhibited impaired cardiac function with HF, cardiac fibrosis, and profound SAN dysfunction. Ultrastructural imaging using electron microscope (EM) tomography revealed abnormal mitochondrial structure with increased mitochondria–SR distance. The expression of Mfn2 was significantly down-regulated and showed reduced colocalization with RyR2 in HF SAN cells. Indeed, SAN-specific Mfn2 knockdown led to alterations in the mitochondria–SR microdomains and SAN dysfunction. Finally, disruptions in the mitochondria–SR microdomains resulted in abnormal mitochondrial Ca(2+) handling, alterations in localized protein kinase A (PKA) activity, and impaired mitochondrial function in HF SAN cells. The current study provides insights into the role of mitochondria–SR microdomains in SAN automaticity and possible therapeutic targets for SAN dysfunction in HF patients. National Academy of Sciences 2022-08-31 2022-09-06 /pmc/articles/PMC9456763/ /pubmed/36044551 http://dx.doi.org/10.1073/pnas.2206708119 Text en Copyright © 2022 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Biological Sciences
Ren, Lu
Gopireddy, Raghavender R.
Perkins, Guy
Zhang, Hao
Timofeyev, Valeriy
Lyu, Yankun
Diloretto, Daphne A.
Trinh, Pauline
Sirish, Padmini
Overton, James L.
Xu, Wilson
Grainger, Nathan
Xiang, Yang K.
Dedkova, Elena N.
Zhang, Xiao-Dong
Yamoah, Ebenezer N.
Navedo, Manuel F.
Thai, Phung N.
Chiamvimonvat, Nipavan
Disruption of mitochondria–sarcoplasmic reticulum microdomain connectomics contributes to sinus node dysfunction in heart failure
title Disruption of mitochondria–sarcoplasmic reticulum microdomain connectomics contributes to sinus node dysfunction in heart failure
title_full Disruption of mitochondria–sarcoplasmic reticulum microdomain connectomics contributes to sinus node dysfunction in heart failure
title_fullStr Disruption of mitochondria–sarcoplasmic reticulum microdomain connectomics contributes to sinus node dysfunction in heart failure
title_full_unstemmed Disruption of mitochondria–sarcoplasmic reticulum microdomain connectomics contributes to sinus node dysfunction in heart failure
title_short Disruption of mitochondria–sarcoplasmic reticulum microdomain connectomics contributes to sinus node dysfunction in heart failure
title_sort disruption of mitochondria–sarcoplasmic reticulum microdomain connectomics contributes to sinus node dysfunction in heart failure
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9456763/
https://www.ncbi.nlm.nih.gov/pubmed/36044551
http://dx.doi.org/10.1073/pnas.2206708119
work_keys_str_mv AT renlu disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT gopireddyraghavenderr disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT perkinsguy disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT zhanghao disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT timofeyevvaleriy disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT lyuyankun disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT dilorettodaphnea disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT trinhpauline disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT sirishpadmini disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT overtonjamesl disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT xuwilson disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT graingernathan disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT xiangyangk disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT dedkovaelenan disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT zhangxiaodong disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT yamoahebenezern disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT navedomanuelf disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT thaiphungn disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure
AT chiamvimonvatnipavan disruptionofmitochondriasarcoplasmicreticulummicrodomainconnectomicscontributestosinusnodedysfunctioninheartfailure