Cargando…
Efficient Near-Field Radiofrequency Imaging of Impact Damage on CFRP Materials with Learning-Based Compressed Sensing
Carbon fiber-reinforced polymer (CFRP) is a widely-used composite material that is vulnerable to impact damage. Light impact damages destroy the inner structure but barely show obvious change on the surface. As a non-contact and high-resolution method to detect subsurface and inner defect, near-fiel...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457078/ https://www.ncbi.nlm.nih.gov/pubmed/36079259 http://dx.doi.org/10.3390/ma15175874 |
_version_ | 1784785968151134208 |
---|---|
author | Song, Huadong Wang, Zijun Zeng, Yanli Guo, Xiaoting Tang, Chaoqing |
author_facet | Song, Huadong Wang, Zijun Zeng, Yanli Guo, Xiaoting Tang, Chaoqing |
author_sort | Song, Huadong |
collection | PubMed |
description | Carbon fiber-reinforced polymer (CFRP) is a widely-used composite material that is vulnerable to impact damage. Light impact damages destroy the inner structure but barely show obvious change on the surface. As a non-contact and high-resolution method to detect subsurface and inner defect, near-field radiofrequency imaging (NRI) suffers from high imaging times. Although some existing works use compressed sensing (CS) for a faster measurement, the corresponding CS reconstruction time remains high. This paper proposes a deep learning-based CS method for fast NRI, this plugin method decreases the measurement time by one order of magnitude without hardware modification and achieves real-time imaging during CS reconstruction. A special 0/1-Bernoulli measurement matrix is designed for sensor scanning firstly, and an interpretable neural network-based CS reconstruction method is proposed. Besides real-time reconstruction, the proposed learning-based reconstruction method can further reduce the required data thus reducing measurement time more than existing CS methods. Under the same imaging quality, experimental results in an NRI system show the proposed method is 20 times faster than traditional raster scan and existing CS reconstruction methods, and the required data is reduced by more than 90% than existing CS reconstruction methods. |
format | Online Article Text |
id | pubmed-9457078 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94570782022-09-09 Efficient Near-Field Radiofrequency Imaging of Impact Damage on CFRP Materials with Learning-Based Compressed Sensing Song, Huadong Wang, Zijun Zeng, Yanli Guo, Xiaoting Tang, Chaoqing Materials (Basel) Article Carbon fiber-reinforced polymer (CFRP) is a widely-used composite material that is vulnerable to impact damage. Light impact damages destroy the inner structure but barely show obvious change on the surface. As a non-contact and high-resolution method to detect subsurface and inner defect, near-field radiofrequency imaging (NRI) suffers from high imaging times. Although some existing works use compressed sensing (CS) for a faster measurement, the corresponding CS reconstruction time remains high. This paper proposes a deep learning-based CS method for fast NRI, this plugin method decreases the measurement time by one order of magnitude without hardware modification and achieves real-time imaging during CS reconstruction. A special 0/1-Bernoulli measurement matrix is designed for sensor scanning firstly, and an interpretable neural network-based CS reconstruction method is proposed. Besides real-time reconstruction, the proposed learning-based reconstruction method can further reduce the required data thus reducing measurement time more than existing CS methods. Under the same imaging quality, experimental results in an NRI system show the proposed method is 20 times faster than traditional raster scan and existing CS reconstruction methods, and the required data is reduced by more than 90% than existing CS reconstruction methods. MDPI 2022-08-25 /pmc/articles/PMC9457078/ /pubmed/36079259 http://dx.doi.org/10.3390/ma15175874 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Song, Huadong Wang, Zijun Zeng, Yanli Guo, Xiaoting Tang, Chaoqing Efficient Near-Field Radiofrequency Imaging of Impact Damage on CFRP Materials with Learning-Based Compressed Sensing |
title | Efficient Near-Field Radiofrequency Imaging of Impact Damage on CFRP Materials with Learning-Based Compressed Sensing |
title_full | Efficient Near-Field Radiofrequency Imaging of Impact Damage on CFRP Materials with Learning-Based Compressed Sensing |
title_fullStr | Efficient Near-Field Radiofrequency Imaging of Impact Damage on CFRP Materials with Learning-Based Compressed Sensing |
title_full_unstemmed | Efficient Near-Field Radiofrequency Imaging of Impact Damage on CFRP Materials with Learning-Based Compressed Sensing |
title_short | Efficient Near-Field Radiofrequency Imaging of Impact Damage on CFRP Materials with Learning-Based Compressed Sensing |
title_sort | efficient near-field radiofrequency imaging of impact damage on cfrp materials with learning-based compressed sensing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457078/ https://www.ncbi.nlm.nih.gov/pubmed/36079259 http://dx.doi.org/10.3390/ma15175874 |
work_keys_str_mv | AT songhuadong efficientnearfieldradiofrequencyimagingofimpactdamageoncfrpmaterialswithlearningbasedcompressedsensing AT wangzijun efficientnearfieldradiofrequencyimagingofimpactdamageoncfrpmaterialswithlearningbasedcompressedsensing AT zengyanli efficientnearfieldradiofrequencyimagingofimpactdamageoncfrpmaterialswithlearningbasedcompressedsensing AT guoxiaoting efficientnearfieldradiofrequencyimagingofimpactdamageoncfrpmaterialswithlearningbasedcompressedsensing AT tangchaoqing efficientnearfieldradiofrequencyimagingofimpactdamageoncfrpmaterialswithlearningbasedcompressedsensing |