Cargando…
Chirality in the Solid State: Chiral Crystal Structures in Chiral and Achiral Space Groups
Chirality depends on particular symmetries. For crystal structures it describes the absence of mirror planes and inversion centers, and in addition to translations, only rotations are allowed as symmetry elements. However, chiral space groups have additional restrictions on the allowed screw rotatio...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457223/ https://www.ncbi.nlm.nih.gov/pubmed/36079191 http://dx.doi.org/10.3390/ma15175812 |
_version_ | 1784786003033063424 |
---|---|
author | Fecher, Gerhard H. Kübler, Jürgen Felser, Claudia |
author_facet | Fecher, Gerhard H. Kübler, Jürgen Felser, Claudia |
author_sort | Fecher, Gerhard H. |
collection | PubMed |
description | Chirality depends on particular symmetries. For crystal structures it describes the absence of mirror planes and inversion centers, and in addition to translations, only rotations are allowed as symmetry elements. However, chiral space groups have additional restrictions on the allowed screw rotations as a symmetry element, because they always appear in enantiomorphous pairs. This study classifies and distinguishes the chiral structures and space groups. Chirality is quantified using Hausdorff distances and continuous chirality measures and selected crystal structures are reported. Chirality is discussed for bulk solids and their surfaces. Moreover, the band structure, and thus, the density of states, is found to be affected by the same crystal parameters as chirality. However, it is independent of handedness. The Berry curvature, as a topological measure of the electronic structure, depends on the handedness but is not proof of chirality because it responds to the inversion of a structure. For molecules, optical circular dichroism is one of the most important measures for chirality. Thus, it is proposed in this study that the circular dichroism in the angular distribution of photoelectrons in high symmetry configurations can be used to distinguish the handedness of chiral solids and their surfaces. |
format | Online Article Text |
id | pubmed-9457223 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94572232022-09-09 Chirality in the Solid State: Chiral Crystal Structures in Chiral and Achiral Space Groups Fecher, Gerhard H. Kübler, Jürgen Felser, Claudia Materials (Basel) Article Chirality depends on particular symmetries. For crystal structures it describes the absence of mirror planes and inversion centers, and in addition to translations, only rotations are allowed as symmetry elements. However, chiral space groups have additional restrictions on the allowed screw rotations as a symmetry element, because they always appear in enantiomorphous pairs. This study classifies and distinguishes the chiral structures and space groups. Chirality is quantified using Hausdorff distances and continuous chirality measures and selected crystal structures are reported. Chirality is discussed for bulk solids and their surfaces. Moreover, the band structure, and thus, the density of states, is found to be affected by the same crystal parameters as chirality. However, it is independent of handedness. The Berry curvature, as a topological measure of the electronic structure, depends on the handedness but is not proof of chirality because it responds to the inversion of a structure. For molecules, optical circular dichroism is one of the most important measures for chirality. Thus, it is proposed in this study that the circular dichroism in the angular distribution of photoelectrons in high symmetry configurations can be used to distinguish the handedness of chiral solids and their surfaces. MDPI 2022-08-23 /pmc/articles/PMC9457223/ /pubmed/36079191 http://dx.doi.org/10.3390/ma15175812 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Fecher, Gerhard H. Kübler, Jürgen Felser, Claudia Chirality in the Solid State: Chiral Crystal Structures in Chiral and Achiral Space Groups |
title | Chirality in the Solid State: Chiral Crystal Structures in Chiral and Achiral Space Groups |
title_full | Chirality in the Solid State: Chiral Crystal Structures in Chiral and Achiral Space Groups |
title_fullStr | Chirality in the Solid State: Chiral Crystal Structures in Chiral and Achiral Space Groups |
title_full_unstemmed | Chirality in the Solid State: Chiral Crystal Structures in Chiral and Achiral Space Groups |
title_short | Chirality in the Solid State: Chiral Crystal Structures in Chiral and Achiral Space Groups |
title_sort | chirality in the solid state: chiral crystal structures in chiral and achiral space groups |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457223/ https://www.ncbi.nlm.nih.gov/pubmed/36079191 http://dx.doi.org/10.3390/ma15175812 |
work_keys_str_mv | AT fechergerhardh chiralityinthesolidstatechiralcrystalstructuresinchiralandachiralspacegroups AT kublerjurgen chiralityinthesolidstatechiralcrystalstructuresinchiralandachiralspacegroups AT felserclaudia chiralityinthesolidstatechiralcrystalstructuresinchiralandachiralspacegroups |