Cargando…

Flame Retardancy and Thermal Property of Environment-Friendly Poly(lactic acid) Composites Based on Banana Peel Powder

Banana peel powder (BPP) was used to prepare poly(lactic acid) (PLA) bio-based composites and the flame retardancy was enhanced by introducing silica-gel microencapsulated ammonium polyphosphate (MCAPP). The results showed that the limiting oxygen index (LOI) of PLA containing 15 wt % BPP was 22.1%...

Descripción completa

Detalles Bibliográficos
Autores principales: Kong, Fanbei, Nie, Baisheng, Han, Chao, Zhao, Dan, Hou, Yanan, Xu, Yuxuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457241/
https://www.ncbi.nlm.nih.gov/pubmed/36079358
http://dx.doi.org/10.3390/ma15175977
Descripción
Sumario:Banana peel powder (BPP) was used to prepare poly(lactic acid) (PLA) bio-based composites and the flame retardancy was enhanced by introducing silica-gel microencapsulated ammonium polyphosphate (MCAPP). The results showed that the limiting oxygen index (LOI) of PLA containing 15 wt % BPP was 22.1% and just passed the UL-94 V-2 rate. Moreover, with the introduction of 5 wt % MCAPP and 15 wt % BPP, the PLA composite had a higher LOI value of 31.5%, and reached the UL-94 V-0 rating, with self-extinguishing and anti-dripping abilities. The PLA/M5B15 also had a lower peak heat release rate (296.7 kW·m(−2)), which was 16% lower than that of the PLA/B15 composite. Furthermore, the synergistic effects between MCAPP and BPP impart better thermal stability to PLA composites. According to the investigation of the char residue and pyrolysis gaseous products, MCAPP with BPP addition is beneficial to the formation of a higher quality char layer in the solid phase but also plays the flame retardant effect in the gas phase. This work provides a simple and efficient method to solve the high cost and flammability issues of PLA composites.