Cargando…
Evolution of Microstructural Characteristics of Carbonated Cement Pastes Subjected to High Temperatures Evaluated by MIP and SEM
The microstructural evolutions of both uncarbonated and carbonated cement pastes subjected to various high temperatures (30 °C, 200 °C, 400 °C, 500 °C, 600 °C, 720 °C, and 950 °C) are presented in this study by the means of mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM)....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457379/ https://www.ncbi.nlm.nih.gov/pubmed/36079418 http://dx.doi.org/10.3390/ma15176037 |
_version_ | 1784786040556355584 |
---|---|
author | Li, Yongqiang Luo, Yaoming Du, Hangyu Liu, Wei Tang, Luping Xing, Feng |
author_facet | Li, Yongqiang Luo, Yaoming Du, Hangyu Liu, Wei Tang, Luping Xing, Feng |
author_sort | Li, Yongqiang |
collection | PubMed |
description | The microstructural evolutions of both uncarbonated and carbonated cement pastes subjected to various high temperatures (30 °C, 200 °C, 400 °C, 500 °C, 600 °C, 720 °C, and 950 °C) are presented in this study by the means of mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). It was found that the thermal stabilities of uncarbonated cement pastes were significantly changed from 400 to 500 °C due to the decomposition of portlandite at this temperature range. More large pores and microcracks were generated from 600 to 720 °C, with the depolymerization of C-S-H. After carbonation, the microstructures of carbonated cement pastes remained unchanged below 500 °C and started to degrade at 600 °C, due to the decompositions of calcium carbonates and calcium modified silica gel. At 950 °C, both uncarbonated and carbonated cement pastes showed a loosely honeycombed microstructure, composed mainly of β-C(2)S and lime. It can be concluded that carbonation improves the high-temperature resistance of cement pastes up to 500 °C, but this advantage is lost at temperatures over 600 °C. |
format | Online Article Text |
id | pubmed-9457379 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94573792022-09-09 Evolution of Microstructural Characteristics of Carbonated Cement Pastes Subjected to High Temperatures Evaluated by MIP and SEM Li, Yongqiang Luo, Yaoming Du, Hangyu Liu, Wei Tang, Luping Xing, Feng Materials (Basel) Article The microstructural evolutions of both uncarbonated and carbonated cement pastes subjected to various high temperatures (30 °C, 200 °C, 400 °C, 500 °C, 600 °C, 720 °C, and 950 °C) are presented in this study by the means of mercury intrusion porosimetry (MIP) and scanning electron microscopy (SEM). It was found that the thermal stabilities of uncarbonated cement pastes were significantly changed from 400 to 500 °C due to the decomposition of portlandite at this temperature range. More large pores and microcracks were generated from 600 to 720 °C, with the depolymerization of C-S-H. After carbonation, the microstructures of carbonated cement pastes remained unchanged below 500 °C and started to degrade at 600 °C, due to the decompositions of calcium carbonates and calcium modified silica gel. At 950 °C, both uncarbonated and carbonated cement pastes showed a loosely honeycombed microstructure, composed mainly of β-C(2)S and lime. It can be concluded that carbonation improves the high-temperature resistance of cement pastes up to 500 °C, but this advantage is lost at temperatures over 600 °C. MDPI 2022-09-01 /pmc/articles/PMC9457379/ /pubmed/36079418 http://dx.doi.org/10.3390/ma15176037 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Yongqiang Luo, Yaoming Du, Hangyu Liu, Wei Tang, Luping Xing, Feng Evolution of Microstructural Characteristics of Carbonated Cement Pastes Subjected to High Temperatures Evaluated by MIP and SEM |
title | Evolution of Microstructural Characteristics of Carbonated Cement Pastes Subjected to High Temperatures Evaluated by MIP and SEM |
title_full | Evolution of Microstructural Characteristics of Carbonated Cement Pastes Subjected to High Temperatures Evaluated by MIP and SEM |
title_fullStr | Evolution of Microstructural Characteristics of Carbonated Cement Pastes Subjected to High Temperatures Evaluated by MIP and SEM |
title_full_unstemmed | Evolution of Microstructural Characteristics of Carbonated Cement Pastes Subjected to High Temperatures Evaluated by MIP and SEM |
title_short | Evolution of Microstructural Characteristics of Carbonated Cement Pastes Subjected to High Temperatures Evaluated by MIP and SEM |
title_sort | evolution of microstructural characteristics of carbonated cement pastes subjected to high temperatures evaluated by mip and sem |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457379/ https://www.ncbi.nlm.nih.gov/pubmed/36079418 http://dx.doi.org/10.3390/ma15176037 |
work_keys_str_mv | AT liyongqiang evolutionofmicrostructuralcharacteristicsofcarbonatedcementpastessubjectedtohightemperaturesevaluatedbymipandsem AT luoyaoming evolutionofmicrostructuralcharacteristicsofcarbonatedcementpastessubjectedtohightemperaturesevaluatedbymipandsem AT duhangyu evolutionofmicrostructuralcharacteristicsofcarbonatedcementpastessubjectedtohightemperaturesevaluatedbymipandsem AT liuwei evolutionofmicrostructuralcharacteristicsofcarbonatedcementpastessubjectedtohightemperaturesevaluatedbymipandsem AT tangluping evolutionofmicrostructuralcharacteristicsofcarbonatedcementpastessubjectedtohightemperaturesevaluatedbymipandsem AT xingfeng evolutionofmicrostructuralcharacteristicsofcarbonatedcementpastessubjectedtohightemperaturesevaluatedbymipandsem |