Cargando…
MobileSkin: Classification of Skin Lesion Images Acquired Using Mobile Phone-Attached Hand-Held Dermoscopes
Dermoscopy is the visual examination of the skin under a polarized or non-polarized light source. By using dermoscopic equipment, many lesion patterns that are invisible under visible light can be clearly distinguished. Thus, more accurate decisions can be made regarding the treatment of skin lesion...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457478/ https://www.ncbi.nlm.nih.gov/pubmed/36079042 http://dx.doi.org/10.3390/jcm11175102 |
_version_ | 1784786065210474496 |
---|---|
author | Yilmaz, Abdurrahim Gencoglan, Gulsum Varol, Rahmetullah Demircali, Ali Anil Keshavarz, Meysam Uvet, Huseyin |
author_facet | Yilmaz, Abdurrahim Gencoglan, Gulsum Varol, Rahmetullah Demircali, Ali Anil Keshavarz, Meysam Uvet, Huseyin |
author_sort | Yilmaz, Abdurrahim |
collection | PubMed |
description | Dermoscopy is the visual examination of the skin under a polarized or non-polarized light source. By using dermoscopic equipment, many lesion patterns that are invisible under visible light can be clearly distinguished. Thus, more accurate decisions can be made regarding the treatment of skin lesions. The use of images collected from a dermoscope has both increased the performance of human examiners and allowed the development of deep learning models. The availability of large-scale dermoscopic datasets has allowed the development of deep learning models that can classify skin lesions with high accuracy. However, most dermoscopic datasets contain images that were collected from digital dermoscopic devices, as these devices are frequently used for clinical examination. However, dermatologists also often use non-digital hand-held (optomechanical) dermoscopes. This study presents a dataset consisting of dermoscopic images taken using a mobile phone-attached hand-held dermoscope. Four deep learning models based on the MobileNetV1, MobileNetV2, NASNetMobile, and Xception architectures have been developed to classify eight different lesion types using this dataset. The number of images in the dataset was increased with different data augmentation methods. The models were initialized with weights that were pre-trained on the ImageNet dataset, and then they were further fine-tuned using the presented dataset. The most successful models on the unseen test data, MobileNetV2 and Xception, had performances of 89.18% and 89.64%. The results were evaluated with the 5-fold cross-validation method and compared. Our method allows for automated examination of dermoscopic images taken with mobile phone-attached hand-held dermoscopes. |
format | Online Article Text |
id | pubmed-9457478 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94574782022-09-09 MobileSkin: Classification of Skin Lesion Images Acquired Using Mobile Phone-Attached Hand-Held Dermoscopes Yilmaz, Abdurrahim Gencoglan, Gulsum Varol, Rahmetullah Demircali, Ali Anil Keshavarz, Meysam Uvet, Huseyin J Clin Med Article Dermoscopy is the visual examination of the skin under a polarized or non-polarized light source. By using dermoscopic equipment, many lesion patterns that are invisible under visible light can be clearly distinguished. Thus, more accurate decisions can be made regarding the treatment of skin lesions. The use of images collected from a dermoscope has both increased the performance of human examiners and allowed the development of deep learning models. The availability of large-scale dermoscopic datasets has allowed the development of deep learning models that can classify skin lesions with high accuracy. However, most dermoscopic datasets contain images that were collected from digital dermoscopic devices, as these devices are frequently used for clinical examination. However, dermatologists also often use non-digital hand-held (optomechanical) dermoscopes. This study presents a dataset consisting of dermoscopic images taken using a mobile phone-attached hand-held dermoscope. Four deep learning models based on the MobileNetV1, MobileNetV2, NASNetMobile, and Xception architectures have been developed to classify eight different lesion types using this dataset. The number of images in the dataset was increased with different data augmentation methods. The models were initialized with weights that were pre-trained on the ImageNet dataset, and then they were further fine-tuned using the presented dataset. The most successful models on the unseen test data, MobileNetV2 and Xception, had performances of 89.18% and 89.64%. The results were evaluated with the 5-fold cross-validation method and compared. Our method allows for automated examination of dermoscopic images taken with mobile phone-attached hand-held dermoscopes. MDPI 2022-08-30 /pmc/articles/PMC9457478/ /pubmed/36079042 http://dx.doi.org/10.3390/jcm11175102 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yilmaz, Abdurrahim Gencoglan, Gulsum Varol, Rahmetullah Demircali, Ali Anil Keshavarz, Meysam Uvet, Huseyin MobileSkin: Classification of Skin Lesion Images Acquired Using Mobile Phone-Attached Hand-Held Dermoscopes |
title | MobileSkin: Classification of Skin Lesion Images Acquired Using Mobile Phone-Attached Hand-Held Dermoscopes |
title_full | MobileSkin: Classification of Skin Lesion Images Acquired Using Mobile Phone-Attached Hand-Held Dermoscopes |
title_fullStr | MobileSkin: Classification of Skin Lesion Images Acquired Using Mobile Phone-Attached Hand-Held Dermoscopes |
title_full_unstemmed | MobileSkin: Classification of Skin Lesion Images Acquired Using Mobile Phone-Attached Hand-Held Dermoscopes |
title_short | MobileSkin: Classification of Skin Lesion Images Acquired Using Mobile Phone-Attached Hand-Held Dermoscopes |
title_sort | mobileskin: classification of skin lesion images acquired using mobile phone-attached hand-held dermoscopes |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457478/ https://www.ncbi.nlm.nih.gov/pubmed/36079042 http://dx.doi.org/10.3390/jcm11175102 |
work_keys_str_mv | AT yilmazabdurrahim mobileskinclassificationofskinlesionimagesacquiredusingmobilephoneattachedhandhelddermoscopes AT gencoglangulsum mobileskinclassificationofskinlesionimagesacquiredusingmobilephoneattachedhandhelddermoscopes AT varolrahmetullah mobileskinclassificationofskinlesionimagesacquiredusingmobilephoneattachedhandhelddermoscopes AT demircalialianil mobileskinclassificationofskinlesionimagesacquiredusingmobilephoneattachedhandhelddermoscopes AT keshavarzmeysam mobileskinclassificationofskinlesionimagesacquiredusingmobilephoneattachedhandhelddermoscopes AT uvethuseyin mobileskinclassificationofskinlesionimagesacquiredusingmobilephoneattachedhandhelddermoscopes |