Cargando…
Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review
Selective laser sintering of nanoparticles enables the direct and rapid formation of a functional layer even on heat-sensitive flexible and stretchable substrates, and is rising as a pioneering fabrication technology for future-oriented applications. To date, laser sintering has been successfully ap...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457495/ https://www.ncbi.nlm.nih.gov/pubmed/36079386 http://dx.doi.org/10.3390/ma15176006 |
_version_ | 1784786069507538944 |
---|---|
author | Hwang, Eunseung Hong, Jungmin Yoon, Jonghun Hong, Sukjoon |
author_facet | Hwang, Eunseung Hong, Jungmin Yoon, Jonghun Hong, Sukjoon |
author_sort | Hwang, Eunseung |
collection | PubMed |
description | Selective laser sintering of nanoparticles enables the direct and rapid formation of a functional layer even on heat-sensitive flexible and stretchable substrates, and is rising as a pioneering fabrication technology for future-oriented applications. To date, laser sintering has been successfully applied to various target nanomaterials including a wide range of metal and metal-oxide nanoparticles, and extensive investigation of relevant experimental schemes have not only reduced the minimum feature size but also have further expanded the scalability of the process. In the beginning, the selective laser sintering process was regarded as an alternative method to conventional manufacturing processes, but recent studies have shown that the unique characteristics of the laser-sintered layer may improve device performance or even enable novel functionalities which were not achievable using conventional fabrication techniques. In this regard, we summarize the current developmental status of the selective laser sintering technique for nanoparticles, affording special attention to recent emerging applications that adopt the laser sintering scheme. |
format | Online Article Text |
id | pubmed-9457495 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94574952022-09-09 Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review Hwang, Eunseung Hong, Jungmin Yoon, Jonghun Hong, Sukjoon Materials (Basel) Review Selective laser sintering of nanoparticles enables the direct and rapid formation of a functional layer even on heat-sensitive flexible and stretchable substrates, and is rising as a pioneering fabrication technology for future-oriented applications. To date, laser sintering has been successfully applied to various target nanomaterials including a wide range of metal and metal-oxide nanoparticles, and extensive investigation of relevant experimental schemes have not only reduced the minimum feature size but also have further expanded the scalability of the process. In the beginning, the selective laser sintering process was regarded as an alternative method to conventional manufacturing processes, but recent studies have shown that the unique characteristics of the laser-sintered layer may improve device performance or even enable novel functionalities which were not achievable using conventional fabrication techniques. In this regard, we summarize the current developmental status of the selective laser sintering technique for nanoparticles, affording special attention to recent emerging applications that adopt the laser sintering scheme. MDPI 2022-08-31 /pmc/articles/PMC9457495/ /pubmed/36079386 http://dx.doi.org/10.3390/ma15176006 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Review Hwang, Eunseung Hong, Jungmin Yoon, Jonghun Hong, Sukjoon Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review |
title | Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review |
title_full | Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review |
title_fullStr | Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review |
title_full_unstemmed | Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review |
title_short | Direct Writing of Functional Layer by Selective Laser Sintering of Nanoparticles for Emerging Applications: A Review |
title_sort | direct writing of functional layer by selective laser sintering of nanoparticles for emerging applications: a review |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457495/ https://www.ncbi.nlm.nih.gov/pubmed/36079386 http://dx.doi.org/10.3390/ma15176006 |
work_keys_str_mv | AT hwangeunseung directwritingoffunctionallayerbyselectivelasersinteringofnanoparticlesforemergingapplicationsareview AT hongjungmin directwritingoffunctionallayerbyselectivelasersinteringofnanoparticlesforemergingapplicationsareview AT yoonjonghun directwritingoffunctionallayerbyselectivelasersinteringofnanoparticlesforemergingapplicationsareview AT hongsukjoon directwritingoffunctionallayerbyselectivelasersinteringofnanoparticlesforemergingapplicationsareview |