Cargando…
Metal-Free Phosphination and Continued Functionalization of Pyridine: A Theoretical Study
This study investigates the mechanism of metal-free pyridine phosphination with P(OEt)(3), PPh(3), and PAr(2)CF(3) using density functional theory calculations. The results show that the reaction mechanism and rate-determining step vary depending on the phosphine and additive used. For example, phos...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457550/ https://www.ncbi.nlm.nih.gov/pubmed/36080460 http://dx.doi.org/10.3390/molecules27175694 |
_version_ | 1784786083058286592 |
---|---|
author | Du, Pan Yin, Yuhao Shi, Dai Mao, Kexin Yu, Qianyuan Zhao, Jiyang |
author_facet | Du, Pan Yin, Yuhao Shi, Dai Mao, Kexin Yu, Qianyuan Zhao, Jiyang |
author_sort | Du, Pan |
collection | PubMed |
description | This study investigates the mechanism of metal-free pyridine phosphination with P(OEt)(3), PPh(3), and PAr(2)CF(3) using density functional theory calculations. The results show that the reaction mechanism and rate-determining step vary depending on the phosphine and additive used. For example, phosphination of pyridine with P(OEt)(3) occurs in five stages, and ethyl abstraction is the rate-determining step. Meanwhile, 2-Ph-pyridine phosphination with PPh(3) is a four-step reaction with proton abstraction as the rate-limiting step. Energy decomposition analysis of the transition states reveals that steric hindrance in the phosphine molecule plays a key role in the site-selective formation of the phosphonium salt. The mechanism of 2-Ph-pyridine phosphination with PAr(2)CF(3) is similar to that with PPh(3), and analyses of the effects of substituents show that electron-withdrawing groups decreased the nucleophilicity of the phosphine, whereas aryl electron-donating groups increased it. Finally, TfO(−) plays an important role in the C–H fluoroalkylation of pyridine, as it brings weak interactions. |
format | Online Article Text |
id | pubmed-9457550 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94575502022-09-09 Metal-Free Phosphination and Continued Functionalization of Pyridine: A Theoretical Study Du, Pan Yin, Yuhao Shi, Dai Mao, Kexin Yu, Qianyuan Zhao, Jiyang Molecules Article This study investigates the mechanism of metal-free pyridine phosphination with P(OEt)(3), PPh(3), and PAr(2)CF(3) using density functional theory calculations. The results show that the reaction mechanism and rate-determining step vary depending on the phosphine and additive used. For example, phosphination of pyridine with P(OEt)(3) occurs in five stages, and ethyl abstraction is the rate-determining step. Meanwhile, 2-Ph-pyridine phosphination with PPh(3) is a four-step reaction with proton abstraction as the rate-limiting step. Energy decomposition analysis of the transition states reveals that steric hindrance in the phosphine molecule plays a key role in the site-selective formation of the phosphonium salt. The mechanism of 2-Ph-pyridine phosphination with PAr(2)CF(3) is similar to that with PPh(3), and analyses of the effects of substituents show that electron-withdrawing groups decreased the nucleophilicity of the phosphine, whereas aryl electron-donating groups increased it. Finally, TfO(−) plays an important role in the C–H fluoroalkylation of pyridine, as it brings weak interactions. MDPI 2022-09-03 /pmc/articles/PMC9457550/ /pubmed/36080460 http://dx.doi.org/10.3390/molecules27175694 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Du, Pan Yin, Yuhao Shi, Dai Mao, Kexin Yu, Qianyuan Zhao, Jiyang Metal-Free Phosphination and Continued Functionalization of Pyridine: A Theoretical Study |
title | Metal-Free Phosphination and Continued Functionalization of Pyridine: A Theoretical Study |
title_full | Metal-Free Phosphination and Continued Functionalization of Pyridine: A Theoretical Study |
title_fullStr | Metal-Free Phosphination and Continued Functionalization of Pyridine: A Theoretical Study |
title_full_unstemmed | Metal-Free Phosphination and Continued Functionalization of Pyridine: A Theoretical Study |
title_short | Metal-Free Phosphination and Continued Functionalization of Pyridine: A Theoretical Study |
title_sort | metal-free phosphination and continued functionalization of pyridine: a theoretical study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457550/ https://www.ncbi.nlm.nih.gov/pubmed/36080460 http://dx.doi.org/10.3390/molecules27175694 |
work_keys_str_mv | AT dupan metalfreephosphinationandcontinuedfunctionalizationofpyridineatheoreticalstudy AT yinyuhao metalfreephosphinationandcontinuedfunctionalizationofpyridineatheoreticalstudy AT shidai metalfreephosphinationandcontinuedfunctionalizationofpyridineatheoreticalstudy AT maokexin metalfreephosphinationandcontinuedfunctionalizationofpyridineatheoreticalstudy AT yuqianyuan metalfreephosphinationandcontinuedfunctionalizationofpyridineatheoreticalstudy AT zhaojiyang metalfreephosphinationandcontinuedfunctionalizationofpyridineatheoreticalstudy |