Cargando…

How Computations Can Assist the Rational Design of Drugs for Photodynamic Therapy: Photosensitizing Activity Assessment of a Ru(II)-BODIPY Assembly

Ruthenium-based complexes represent a new frontier in light-mediated therapeutic strategies against cancer. Here, a density functional-theory-based computational investigation, of the photophysical properties of a conjugate BODIPY-Ru(II) complex, is presented. Such a complex was reported to be a goo...

Descripción completa

Detalles Bibliográficos
Autores principales: Ponte, Fortuna, Scopelliti, Davide Maria, Sanna, Nico, Sicilia, Emilia, Mazzone, Gloria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457801/
https://www.ncbi.nlm.nih.gov/pubmed/36080406
http://dx.doi.org/10.3390/molecules27175635
Descripción
Sumario:Ruthenium-based complexes represent a new frontier in light-mediated therapeutic strategies against cancer. Here, a density functional-theory-based computational investigation, of the photophysical properties of a conjugate BODIPY-Ru(II) complex, is presented. Such a complex was reported to be a good photosensitizer for photodynamic therapy (PDT), successfully integrating the qualities of a NIR-absorbing distyryl-BODIPY dye and a PDT-active [Ru(bpy)(3)](2+) moiety. Therefore, the behaviour of the conjugate BODIPY-Ru(II) complex was compared with those of the metal-free BODIPY chromophore and the Ru(II) complex. Absorptions spectra, excitation energies of both singlet and triplet states as well as spin–orbit-matrix elements (SOCs) were used to rationalise the experimentally observed different activities of the three potential chromophores. The outcomes evidence a limited participation of the Ru moiety in the ISC processes that justifies the small SOCs obtained for the conjugate. A plausible explanation was provided combining the computational results with the experimental evidences.