Cargando…

Ultrafine-Grained Tungsten Heavy Alloy Prepared by High-Pressure Spark Plasma Sintering

Tungsten heavy alloy (WHA) is an ideal material employed for kinetic energy penetrators due to its high density and excellent mechanical properties. However, it is difficult to obtain ultrafine-grained tungsten alloy with excellent properties by traditional powder metallurgy method because of severe...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Shuaihao, Zhu, Qiqi, Li, Qiunan, Ji, Wei, Wang, Weimin, Fu, Zhengyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457849/
https://www.ncbi.nlm.nih.gov/pubmed/36079552
http://dx.doi.org/10.3390/ma15176168
Descripción
Sumario:Tungsten heavy alloy (WHA) is an ideal material employed for kinetic energy penetrators due to its high density and excellent mechanical properties. However, it is difficult to obtain ultrafine-grained tungsten alloy with excellent properties by traditional powder metallurgy method because of severe grain growth at a high sintering temperature with a long soaking time. In this study, the sintering behavior of tungsten alloys was studied at 800 to 1300 °C, and highly dense 93W-5.6Ni-1.4Fe (wt.%) WHA was successfully fabricated at a low temperature of 950 °C with a high pressure of 150 MPa by spark plasma sintering. The as-sintered tungsten alloy possesses a high relative density (98.6%), ultrafine grain size (271 nm) and high dislocation density (2.6 × 10(16) m(−2)), which results in excellent properties such as a high hardness (1079 HV1). The high sintering pressure is considered to support an additional driving force for the sintering and lead to a low-temperature densification, which effectively limits grain growth.