Cargando…
Plasmonic Effect of Ag/Au Composite Structures on the Material Transition
Noble metal nanostructures can produce the surface plasmon resonance under appropriate photoexcitation, which can be used to promote or facilitate chemical reactions, as well as photocatalytic materials, due to their strong plasmon resonance in the visible light region. In the current work, Ag/Au na...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457859/ https://www.ncbi.nlm.nih.gov/pubmed/36079965 http://dx.doi.org/10.3390/nano12172927 |
Sumario: | Noble metal nanostructures can produce the surface plasmon resonance under appropriate photoexcitation, which can be used to promote or facilitate chemical reactions, as well as photocatalytic materials, due to their strong plasmon resonance in the visible light region. In the current work, Ag/Au nanoislands (NIs) and Ag NIs/Au film composite systems were designed, and their thermocatalysis performance was investigated using luminescence of Eu(3+) as a probe. Compared with Ag NIs, the catalytic efficiency and stability of surface plasmons of Ag/Au NIs and Ag NIs/Au film composite systems were greatly improved. It was found that the metal NIs can also generate strong localized heat at low temperature environment, enabling the transition of NaYF(4):Eu(3+) to Y(2)O(3): Eu(3+), and anti-oxidation was realized by depositing gold on the surface of silver, resulting in the relative stability of the constructed complex. |
---|