Cargando…
Dexamethasone Intravitreal Implant Is Active at the Molecular Level Eight Weeks after Implantation in Experimental Central Retinal Vein Occlusion
Central retinal vein occlusion (CRVO) is a visually disabling condition resulting from a thrombus in the major outflow vessel of the eye. The inflammatory response in CRVO is effectively treated with a dexamethasone (DEX) intravitreal implant. Uncovering the proteome changes following DEX implant in...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457885/ https://www.ncbi.nlm.nih.gov/pubmed/36080454 http://dx.doi.org/10.3390/molecules27175687 |
_version_ | 1784786166033154048 |
---|---|
author | Cehofski, Lasse Jørgensen Kruse, Anders Mæng, Mads Odgaard Sejergaard, Benn Falch Schlosser, Anders Sorensen, Grith Lykke Grauslund, Jakob Honoré, Bent Vorum, Henrik |
author_facet | Cehofski, Lasse Jørgensen Kruse, Anders Mæng, Mads Odgaard Sejergaard, Benn Falch Schlosser, Anders Sorensen, Grith Lykke Grauslund, Jakob Honoré, Bent Vorum, Henrik |
author_sort | Cehofski, Lasse Jørgensen |
collection | PubMed |
description | Central retinal vein occlusion (CRVO) is a visually disabling condition resulting from a thrombus in the major outflow vessel of the eye. The inflammatory response in CRVO is effectively treated with a dexamethasone (DEX) intravitreal implant. Uncovering the proteome changes following DEX implant intervention in CRVO may identify key proteins that mediate the beneficial effects of DEX. In six Göttingen minipigs, CRVO was induced in both eyes with an argon laser using a well-established experimental model. The right eyes were treated with a DEX intravitreal implant (Ozurdex, Allergan), while the left control eyes received a sham injection. Eight weeks after DEX intervention, retinal samples were collected and analyzed with tandem mass tag-based mass spectrometry. DEX implant intervention resulted in the upregulation of peptidyl-prolyl cis–trans isomerase FKBP5 (FKBP5) and ubiquilin-4. Immunohistochemistry showed expression of FKBP5 in the nuclei in all cellular layers of the retina. Cell adhesion molecule 3, tumor necrosis factor receptor superfamily member 16, and trans-1,2-dihydrobenzene-1,2-diol dehydrogenase were downregulated following DEX intervention. The upregulation of the corticosteroid-sensitive protein FKBP5 suggests that the implant remained active at the molecular level after eight weeks of treatment. Future studies may investigate if FKBP5 regulates the efficacy and duration of the DEX implant. |
format | Online Article Text |
id | pubmed-9457885 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-94578852022-09-09 Dexamethasone Intravitreal Implant Is Active at the Molecular Level Eight Weeks after Implantation in Experimental Central Retinal Vein Occlusion Cehofski, Lasse Jørgensen Kruse, Anders Mæng, Mads Odgaard Sejergaard, Benn Falch Schlosser, Anders Sorensen, Grith Lykke Grauslund, Jakob Honoré, Bent Vorum, Henrik Molecules Article Central retinal vein occlusion (CRVO) is a visually disabling condition resulting from a thrombus in the major outflow vessel of the eye. The inflammatory response in CRVO is effectively treated with a dexamethasone (DEX) intravitreal implant. Uncovering the proteome changes following DEX implant intervention in CRVO may identify key proteins that mediate the beneficial effects of DEX. In six Göttingen minipigs, CRVO was induced in both eyes with an argon laser using a well-established experimental model. The right eyes were treated with a DEX intravitreal implant (Ozurdex, Allergan), while the left control eyes received a sham injection. Eight weeks after DEX intervention, retinal samples were collected and analyzed with tandem mass tag-based mass spectrometry. DEX implant intervention resulted in the upregulation of peptidyl-prolyl cis–trans isomerase FKBP5 (FKBP5) and ubiquilin-4. Immunohistochemistry showed expression of FKBP5 in the nuclei in all cellular layers of the retina. Cell adhesion molecule 3, tumor necrosis factor receptor superfamily member 16, and trans-1,2-dihydrobenzene-1,2-diol dehydrogenase were downregulated following DEX intervention. The upregulation of the corticosteroid-sensitive protein FKBP5 suggests that the implant remained active at the molecular level after eight weeks of treatment. Future studies may investigate if FKBP5 regulates the efficacy and duration of the DEX implant. MDPI 2022-09-03 /pmc/articles/PMC9457885/ /pubmed/36080454 http://dx.doi.org/10.3390/molecules27175687 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Cehofski, Lasse Jørgensen Kruse, Anders Mæng, Mads Odgaard Sejergaard, Benn Falch Schlosser, Anders Sorensen, Grith Lykke Grauslund, Jakob Honoré, Bent Vorum, Henrik Dexamethasone Intravitreal Implant Is Active at the Molecular Level Eight Weeks after Implantation in Experimental Central Retinal Vein Occlusion |
title | Dexamethasone Intravitreal Implant Is Active at the Molecular Level Eight Weeks after Implantation in Experimental Central Retinal Vein Occlusion |
title_full | Dexamethasone Intravitreal Implant Is Active at the Molecular Level Eight Weeks after Implantation in Experimental Central Retinal Vein Occlusion |
title_fullStr | Dexamethasone Intravitreal Implant Is Active at the Molecular Level Eight Weeks after Implantation in Experimental Central Retinal Vein Occlusion |
title_full_unstemmed | Dexamethasone Intravitreal Implant Is Active at the Molecular Level Eight Weeks after Implantation in Experimental Central Retinal Vein Occlusion |
title_short | Dexamethasone Intravitreal Implant Is Active at the Molecular Level Eight Weeks after Implantation in Experimental Central Retinal Vein Occlusion |
title_sort | dexamethasone intravitreal implant is active at the molecular level eight weeks after implantation in experimental central retinal vein occlusion |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457885/ https://www.ncbi.nlm.nih.gov/pubmed/36080454 http://dx.doi.org/10.3390/molecules27175687 |
work_keys_str_mv | AT cehofskilassejørgensen dexamethasoneintravitrealimplantisactiveatthemolecularleveleightweeksafterimplantationinexperimentalcentralretinalveinocclusion AT kruseanders dexamethasoneintravitrealimplantisactiveatthemolecularleveleightweeksafterimplantationinexperimentalcentralretinalveinocclusion AT mængmadsodgaard dexamethasoneintravitrealimplantisactiveatthemolecularleveleightweeksafterimplantationinexperimentalcentralretinalveinocclusion AT sejergaardbennfalch dexamethasoneintravitrealimplantisactiveatthemolecularleveleightweeksafterimplantationinexperimentalcentralretinalveinocclusion AT schlosseranders dexamethasoneintravitrealimplantisactiveatthemolecularleveleightweeksafterimplantationinexperimentalcentralretinalveinocclusion AT sorensengrithlykke dexamethasoneintravitrealimplantisactiveatthemolecularleveleightweeksafterimplantationinexperimentalcentralretinalveinocclusion AT grauslundjakob dexamethasoneintravitrealimplantisactiveatthemolecularleveleightweeksafterimplantationinexperimentalcentralretinalveinocclusion AT honorebent dexamethasoneintravitrealimplantisactiveatthemolecularleveleightweeksafterimplantationinexperimentalcentralretinalveinocclusion AT vorumhenrik dexamethasoneintravitrealimplantisactiveatthemolecularleveleightweeksafterimplantationinexperimentalcentralretinalveinocclusion |