Cargando…

2D Nano-Mica Sheets Assembled Membranes for High-Efficiency Oil/Water Separation

Oil-polluted water has become one of the most important environmental concerns nowadays due to the increasing industrial oily wastewater and frequent oil spill accidents. Herein, a novel two-dimensional (2D) nano-mica sheets assembled composite membrane with underwater super-oleophobic properties wa...

Descripción completa

Detalles Bibliográficos
Autores principales: Bao, Yan, Wang, Bin, Du, Conghui, Shi, Qiuhui, Xu, Wenlong, Wang, Zhining
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9457926/
https://www.ncbi.nlm.nih.gov/pubmed/36079934
http://dx.doi.org/10.3390/nano12172895
Descripción
Sumario:Oil-polluted water has become one of the most important environmental concerns nowadays due to the increasing industrial oily wastewater and frequent oil spill accidents. Herein, a novel two-dimensional (2D) nano-mica sheets assembled composite membrane with underwater super-oleophobic properties was developed for effective oil/water separation. A 2D nano-mica sheet was synthesized by a facile solvent-assisted ultrasonic exfoliation and then the obtained 2D nano-mica sheets were co-deposited with dopamine on polyvinylidene fluoride substrate to prepare nano-mica composite membranes (NCM). The NCM is hydrophilic in air and super-oleophobic underwater (the water contact angle in the air is 37.6°, and the oil contact angle in water is 151.4°). Furthermore, the prepared NCM provided outstanding stability in different acid–base environments (pH = 1–11). Noteworthily, the oil removal rate is higher than 99.5% as the sodium dodecyl sulfate SDS-stabilized oil (soya-bean oil, mineral oil and pump oil) -in-water emulsions. Meanwhile, the NCM showed excellent reusability, as the oil removal efficiency kept at 99.0% after ten soya-bean oil-in-water or mineral oil-in-water emulsion filtration cycles. The present work paved a new way for developing a low-cost and environmentally friendly strategy for oily wastewater treatment and developed a high-increment utilization application field for natural minerals.