Cargando…

Using Femtosecond Laser Pulses to Explore the Nonlinear Optical Properties of Au NP Colloids That Were Synthesized by Laser Ablation

In this study, we experimentally investigated the nonlinear optical properties of Au nanoparticles (Au NPs) that were prepared in pure distilled water using the laser ablation method. The Au NPs were prepared using a nanosecond Nd:YAG laser with an ablation time of 5 or 10 min at a constant laser en...

Descripción completa

Detalles Bibliográficos
Autores principales: Ashour, Mohamed, G. Faris, Hameed, Ahmed, Hanan, Mamdouh, Samar, Thambiratnam, Kavintheran, Mohamed, Tarek
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458061/
https://www.ncbi.nlm.nih.gov/pubmed/36080017
http://dx.doi.org/10.3390/nano12172980
Descripción
Sumario:In this study, we experimentally investigated the nonlinear optical properties of Au nanoparticles (Au NPs) that were prepared in pure distilled water using the laser ablation method. The Au NPs were prepared using a nanosecond Nd:YAG laser with an ablation time of 5 or 10 min at a constant laser energy of 100 mJ. The structure and the linear optical properties of the Au NPs were investigated using a transmission electron microscope (TEM) and UV-visible spectrophotometer analysis, respectively. The TEM measurements showed that the average size of the Au NPs varied from 20.3 to 14.1 nm, depending on the laser ablation time. The z-scan technique was used to investigate the nonlinear refractive index ([Formula: see text]) and nonlinear absorption coefficient ([Formula: see text]) of the Au NPs, which were irradiated at different excitation wavelengths that ranged from 740 to 820 nm and at different average powers that ranged from 0.8 to 1.6 W. The Au NP samples exhibited a reverse saturable absorption (RSA) behavior that increased when the excitation wavelength and/or incident laser power increased. In addition, the Au NPs acted as a self-defocusing material whenever the excitation wavelength or incident power were modified.