Cargando…

Fast Synthesis of Au Nanoparticles on Metal–Phenolic Network for Sweat SERS Analysis

The biochemical composition of sweat is closely related to the human physiological state, which provides a favorable window for the monitoring of human health status, especially for the athlete. Herein, an ultra-simple strategy based on the surface-enhanced Raman scattering (SERS) technique for swea...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Xiaoying, Wang, Xin, Ning, Mengling, Wang, Peng, Wang, Wen, Zhang, Xiaozhou, Liu, Zhiming, Zhang, Yanjiao, Li, Shaoxin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9458096/
https://www.ncbi.nlm.nih.gov/pubmed/36080014
http://dx.doi.org/10.3390/nano12172977
Descripción
Sumario:The biochemical composition of sweat is closely related to the human physiological state, which provides a favorable window for the monitoring of human health status, especially for the athlete. Herein, an ultra-simple strategy based on the surface-enhanced Raman scattering (SERS) technique for sweat analysis is established. Metal–phenolic network (MPN), an outstanding organic-inorganic hybrid material, is adopted as the reductant and platform for the in situ formation of Au-MPN, which displays excellent SERS activity with the limit of detection to 10(−15) M for 4-mercaptobenzoic acid (4-MBA). As an ultrasensitive SERS sensor, Au-MPN is capable of discriminating the molecular fingerprints of sweat components acquired from a volunteer after exercise, such as urea, uric acid, lactic acid, and amino acid. For pH sensing, Au-MPN/4-MBA efficiently presents the pH values of the volunteer’s sweat, which can indicate the electrolyte metabolism during exercise. This MPN-based SERS sensing strategy unlocks a new route for the real-time physiological monitoring of human health.